\(\sqrt{ }\)x = 2/3 thì x bằng
Câu 1:
Cho f(x)= \(\dfrac{\sqrt{x+2}-\sqrt{2-x}}{x}\), x≠0. Phải bổ sung thêm giá trị f(0) bằng bao nhiêu thì hàm số f(x) liên tục tại x=0?
Câu 2:
Xét tính liên tục của hàm số
a, f(x)= \(\left\{{}\begin{matrix}x+\dfrac{3}{2}\\\dfrac{\sqrt{x+1}-1}{\sqrt[3]{1+x}-1}\end{matrix}\right.\)khi x≤0 và x>0 tại xo=0
b, f(x)= \(\left\{{}\begin{matrix}\dfrac{x^3-x^2+2x-2}{x-1}\\3x+a\end{matrix}\right.\)với x<1 và với x≥1, xo=1
1.
\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x+2}-\sqrt{2-x}}{x}=\lim\limits_{x\rightarrow0}\dfrac{2x}{x\left(\sqrt{x+2}+\sqrt{2-x}\right)}=\lim\limits_{x\rightarrow0}\dfrac{2}{\sqrt{x+2}+\sqrt{2-x}}=\dfrac{2}{2\sqrt{2}}=\dfrac{\sqrt{2}}{2}\)
Vậy cần bổ sung \(f\left(0\right)=\dfrac{\sqrt{2}}{2}\) để hàm liên tục tại \(x=0\)
2.
a. \(f\left(0\right)=\lim\limits_{x\rightarrow0^-}f\left(x\right)=\lim\limits_{x\rightarrow0^-}\left(x+\dfrac{3}{2}\right)=\dfrac{3}{2}\)
\(\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^+}\dfrac{\sqrt{x+1}-1}{\sqrt[3]{1+x}-1}=\lim\limits_{x\rightarrow0^+}\dfrac{x\left(\sqrt[3]{\left(x+1\right)^2}+\sqrt[3]{x+1}+1\right)}{x\left(\sqrt[]{x+1}+1\right)}\)
\(=\lim\limits_{x\rightarrow0^+}\dfrac{\sqrt[3]{\left(x+1\right)^2}+\sqrt[3]{x+1}+1}{\sqrt[]{x+1}+1}=\dfrac{3}{2}\)
\(\Rightarrow f\left(0\right)=\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^-}f\left(x\right)\) nên hàm liên tục tại \(x=0\)
2b.
\(\lim\limits_{x\rightarrow1^-}f\left(x\right)=\lim\limits_{x\rightarrow1^-}\dfrac{x^3-x^2+2x-2}{x-1}=\lim\limits_{x\rightarrow1^-}\dfrac{x^2\left(x-1\right)+2\left(x-1\right)}{x-1}\)
\(=\lim\limits_{x\rightarrow1^-}\dfrac{\left(x^2+2\right)\left(x-1\right)}{x-1}=\lim\limits_{x\rightarrow1^-}\left(x^2+2\right)=3\)
\(\lim\limits_{x\rightarrow1^+}f\left(x\right)=f\left(1\right)=\lim\limits_{x\rightarrow1^+}\left(3x+a\right)=a+3\)
- Nếu \(a=0\Rightarrow f\left(1\right)=\lim\limits_{x\rightarrow1^-}f\left(x\right)=\lim\limits_{x\rightarrow1^+}f\left(x\right)\) hàm liên tục tại \(x=1\)
- Nếu \(a\ne0\Rightarrow\lim\limits_{x\rightarrow1^-}f\left(x\right)\ne\lim\limits_{x\rightarrow1^+}f\left(x\right)\Rightarrow\) hàm không liên tục tại \(x=1\)
Với GT nào của x thì hai biểu thức sau có GT bằng nhau
\(x^2-2\sqrt{3x}-\sqrt{3}và2x^2+2x+\sqrt{3}\)
Hai biểu thức bằng nhau thì:
\(x^2-2\sqrt{3x}-\sqrt{3}=2x^2+2x+\sqrt{3}\)
\(\Leftrightarrow x^2+2x+2\sqrt{3x}+2\sqrt{3}=0\)
\(\Leftrightarrow x^2+2x\left(1+\sqrt{3}\right)+2\sqrt{3}=0\)
\('\Delta=\left(1+\sqrt{3}\right)^2-2\sqrt{3}=1+2\sqrt{3}+3-2\sqrt{3}=4\)
pt có hai hai nghiệm phân biệt là :
\(x_1=-\left(1+\sqrt{3}\right)+\sqrt{4}=1-\sqrt{3}\)
\(x_2=-\left(1+\sqrt{3}\right)-\sqrt{4}=-3-\sqrt{3}\)
Cho A = \(\dfrac{x+3}{x-9}+\dfrac{2}{\sqrt{x}+3}\) , B = \(\dfrac{1}{\sqrt{x}-3}\)
a) Khi x = 16 thì B = ?
b) Rút gọn P = A - B
c) \(P=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\) thì x = ?
a: Khi x=16 thì B=1/(4-3)=1
b: P=A-B
\(=\dfrac{x+3+2\sqrt{x}-6-\sqrt{x}-3}{x-9}=\dfrac{x+\sqrt{x}-6}{x-9}=\dfrac{\sqrt{x}-2}{\sqrt{x}-3}\)
ĐK: \(x\ge0;x\ne9\)
a) Khi \(x=16\) TMĐKXĐ thì \(B=\dfrac{1}{\sqrt{16}-3}=1\)
b) \(P=A-B\)
\(P=\dfrac{x+3}{x-9}+\dfrac{2}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}-3}\)
\(=\dfrac{x+3+2\left(\sqrt{x}-3\right)-1\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{x+3+2\sqrt{x}-6-\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{x-\sqrt{x}-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{\sqrt{x}+2}{\sqrt{x}+3}\)
c) \(P=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)
\(\Rightarrow\dfrac{\sqrt{x}+2}{\sqrt{x}+3}=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)
\(\Rightarrow\left(\sqrt{x}+2\right)\left(\sqrt{x}+2\right)=\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)\)
\(\Leftrightarrow x+2\sqrt{x}+2\sqrt{x}+4=x+3\sqrt{x}+\sqrt{x}+3\)
\(\Leftrightarrow4=3\) (Sai)
Vậy \(x\in\varnothing\)
\(a,x=16\Rightarrow B=\dfrac{1}{\sqrt{16}-3}=\dfrac{1}{4-3}=1\)
\(b,\) Rút gọn : \(A=\dfrac{x+3}{x-9}+\dfrac{2}{\sqrt{x}+3}\left(dkxd:x\ne9,x\ge0\right)\)
\(=\dfrac{x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\dfrac{2}{\sqrt{x}+3}\)
\(=\dfrac{x+3+2\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{x+3+2\sqrt{x}-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{x+2\sqrt{x}-3}{x-9}\)
Rút gọn \(P=A-B=\dfrac{x+2\sqrt{x}-3}{x-9}-\dfrac{1}{\sqrt{x}-3}\left(dkxd:x\ge0,x\ne9\right)\)
\(=\dfrac{x+2\sqrt{x}-3-\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{x+2\sqrt{x}-3-\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{x+\sqrt{x}-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{x-2\sqrt{x}+3\sqrt{x}-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)+3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}-2}{\sqrt{x}-3}\)
\(c,P=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\Rightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}+2}=\dfrac{\sqrt{x}-2}{\sqrt{x}-3}\left(dkxd:x\ne9,x\ne4,x\ge0\right)\)
\(\Leftrightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}+2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-3}=0\)
\(\Leftrightarrow\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}=0\)
\(\Leftrightarrow\dfrac{x-3\sqrt{x}+\sqrt{x}-3-x+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}=0\)
\(\Leftrightarrow-2\sqrt{x}+1=0\) ( Mất mẫu là bạn lấy mẫu nhân ngược vào 0 bên vế phải nha. )
\(\Leftrightarrow-2\sqrt{x}=-1\)
\(\Leftrightarrow\sqrt{x}=\dfrac{1}{2}\)
\(\Leftrightarrow x=\dfrac{1}{4}\)
Vậy khi \(P=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\) thì \(x=\dfrac{1}{4}\)
\(\sqrt{x}\)=2 thì x^2 bằng mấy
\(x^2=\left(\sqrt{x}\right)^4=4^2=16\)
Với những giá trị nào của x thì giá trị của hai biểu thức bằng nhau :
a) \(x^2+2+2\sqrt{2}\) và \(2\left(1+\sqrt{2}\right)x\)
b) \(\sqrt{3}x^2+2x-1\) và \(2\sqrt{3}x+3\)
c) \(-2\sqrt{2}x-1\) và \(\sqrt{2}x^2+2x+3\)
d) \(x^2-2\sqrt{3}x-\sqrt{3}\) và \(2x^2+2x+\sqrt{3}\)
e) \(\sqrt{3}x^2+2\sqrt{5}x-3\sqrt{3}\) và \(-x^2-2\sqrt{3}x+2\sqrt{5}+1\)
Cho C=\(\sqrt{x+7-6\sqrt{x-2}}+\sqrt{x+23-10\sqrt{x-2}}\)
a, Tìm tập xác định của C
b, Tìm GTNN của C, giá trị tương ứng của x
Mk lm đc đến đây rồi
C=\(\sqrt{\left(\sqrt{x-2}-5\right)^2}+\sqrt{\left(3-\sqrt{x-2}\right)^2}\)
=\(|\sqrt{x-2}-5|+|3-\sqrt{x-2}|\ge|\sqrt{x-2}-5+3-\sqrt{x-2}|=-2\)
mà mk thấy cũng có thể C=\(\sqrt{\left(5-\sqrt{x-2}\right)^2}+\sqrt{\left(\sqrt{x-2}-3\right)^2}\)
Thì khi đó GTNN của C lại bằng 2
Các bn giải thích hộ mk vs. Mình cảm ơn
Làm sai kìa !
Cái chỗ \(\left|\sqrt{x-2}-5+3-\sqrt{x-2}\right|\ge2\) chứ ? Trị tuyệt đối luôn dương mà
Cái trên là vừa phát hiện trong khi giải cái dưới
Vấn đề là giá trị của x cơ
Kiến thức cơ bản r
\(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(ab\ge0\)
\(C\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(\sqrt{x-2}-5\right)\left(3-\sqrt{x-2}\right)\ge0\)
TH1: \(\hept{\begin{cases}\sqrt{x-2}-5\ge0\\3-\sqrt{x-2}\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt{x-2}\ge5\\\sqrt{x-2}\le3\end{cases}}}\) ( loại )
TH2 : \(\hept{\begin{cases}\sqrt{x-2}-5\le0\\3-\sqrt{x-2}\le0\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt{x-2}\le5\\\sqrt{x-2}\ge3\end{cases}}\Leftrightarrow\hept{\begin{cases}x-2\le25\\x-2\ge9\end{cases}\Leftrightarrow}\hept{\begin{cases}x\le27\\x\ge11\end{cases}\Leftrightarrow}11\le x\le27}\) ( nhận )
Vậy GTNN của \(C\) là \(2\) khi \(11\le x\le27\)
Á đù lại nhờ mn giúp mình rồi:
1.\(\hept{\begin{cases}\sqrt{x+2}\left(x-y+3\right)=\sqrt{y}\\x^2+\left(x+3\right)\left(2x-y+5\right)=x+16\end{cases}}\)
2.\(\sqrt{5x^2+4x}-\sqrt{x^2-3x-18}=5\sqrt{x}\)
3.\(2\left(x+1\right)\sqrt{x}+\sqrt{3\left(2x^3+5x^2+4x+1\right)}=5x^3-3x^2+8\)
Tình hình là hai câu cuối mình biết là dùng liên hợp rồi nhưng còn xử lý cái vế dài kia bằng 0 thì mn giúp thôi nhé!!!!!!
cái = 0 của pt 2 ý,,,,bạn thấy nha,,,do x>0 ( ĐKXĐ) ta có \(\frac{5\left(x+49\right)}{\sqrt{5x^2+4x}+21}\ge\frac{x+6}{\sqrt{x^2-3x-18}+6}\)
Từ đó dẫn đến vô lí
b)\(\sqrt{5x^2+4x}-\sqrt{x^2-3x-18}=5\sqrt{x}\)
Đk:....
\(\Leftrightarrow\sqrt{5x^2+4x}-21-\left(\sqrt{x^2-3x-18}-6\right)-\left(5\sqrt{x}-15\right)=0\)
\(\Leftrightarrow\frac{5x^2+4x-441}{\sqrt{5x^2+4}+21}-\frac{x^2-3x-18-36}{\sqrt{x^2-3x-18}+6}-\frac{25x-225}{5\sqrt{x}+15}=0\)
\(\Leftrightarrow\frac{\left(x-9\right)\left(5x+49\right)}{\sqrt{5x^2+4}+21}-\frac{\left(x-9\right)\left(x+6\right)}{\sqrt{x^2-3x-18}+6}-\frac{25\left(x-9\right)}{5\sqrt{x}+15}=0\)
\(\Leftrightarrow\left(x-9\right)\left(\frac{5x+49}{\sqrt{5x^2+4}+21}-\frac{x+6}{\sqrt{x^2-3x-18}+6}-\frac{25}{5\sqrt{x}+15}\right)=0\)
chịu cái trong ngoặc r` bình phương đi :v
cho \(\dfrac{x^2-2\left(m+1\right)x+6m-2}{\sqrt{x-2}}=\sqrt{x-2}\) với m bằng bao nhiêu thì pt có nghiệm duy nhất
ĐKXĐ: \(x>2\)
\(x^2-2\left(m+1\right)x+6m-2=x-2\)
\(\Leftrightarrow x^2-\left(2m+3\right)x+6m=0\) (1)
Pt có nghiệm duy nhất khi và chỉ khi (1) có 2 nghiệm pb thỏa mãn:
\(x_1\le2< x_2\)
\(\Rightarrow\left[{}\begin{matrix}m=1\\f\left(2\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=1\\-2+2m< 0\end{matrix}\right.\) \(\Rightarrow m\le1\)
cho biểu thức A= \(\left(\frac{x-3\sqrt{x}}{x-9}-1\right):\left(\frac{9-x}{x+\sqrt{x}-6}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}+3}\right)\)
( Với x lớn hơn hoặc bằng 0; x khác 2 và 9)
a) Rút gọn biểu thức A
b) Với giá trị nào của x thì A có giá trị = 1/2
c) tính giá trị cuả A tại x= \(19-8\sqrt{3}\)
d) tính số nguyên X để biểu thức A có giá trị là số nguyên ?