Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Neymar JR
Xem chi tiết
Lizy
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 1 2024 lúc 22:13

\(\left\{{}\begin{matrix}mx-y=2\\3x+my=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2x-my=2m\\3x+my=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+3\right)x=2m+5\\y=mx-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m+5}{m^2+3}\\y=mx-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m+5}{m^2+3}\\y=\dfrac{5m-6}{m^2+3}\end{matrix}\right.\)

Thay vào \(x+y=1-\dfrac{m^2}{m^2+3}\)

\(\Leftrightarrow\dfrac{3m+5}{m^2+3}+\dfrac{5m-6}{m^2+3}=1-\dfrac{m^2}{m^2+3}\)

\(\Leftrightarrow\dfrac{8m-1}{m^2+3}=\dfrac{3}{m^2+3}\)

\(\Leftrightarrow8m-1=3\)

\(\Rightarrow m=\dfrac{1}{2}\)

I LOVE BTS
Xem chi tiết
IzuKu
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 2 2022 lúc 21:10

Đề thiếu rồi bạn

Khanh
Xem chi tiết
Nguyễn Hoàng Minh
19 tháng 11 2021 lúc 20:12

Đề là \(\left(x+y\right)\left(m^2+3\right)=-8\) đúng không?

\(HPT\Leftrightarrow\left\{{}\begin{matrix}y=mx-2\\3x+m\left(mx-2\right)=3m\left(1\right)\end{matrix}\right.\\ \left(1\right)\Leftrightarrow3x+m^2x-2m=3m\\ \Leftrightarrow x\left(m^2+3\right)=5m\Leftrightarrow x=\dfrac{5m}{m^2+3}\\ \Leftrightarrow y=mx-2=\dfrac{5m^2}{m^2+3}-2=\dfrac{3m^2-6}{m^2+3}\\ \Leftrightarrow x+y=\dfrac{5m+3m^2-6}{m^2+3}\\ \left(x+y\right)\left(m^2+3\right)=-8\\ \Leftrightarrow3m^2+5m-6=-8\\ \Leftrightarrow3m^2+5m+2=0\\ \Leftrightarrow\left[{}\begin{matrix}m=-\dfrac{2}{3}\\m=-1\end{matrix}\right.\)

Trần Phương Thảo
Xem chi tiết
Nguyễn Ngọc Lộc
7 tháng 2 2021 lúc 8:17

- Thay x = 1 vào hệ phương trình ta được :\(\left\{{}\begin{matrix}m-y=2\\3+my=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=y+2\\my=2\end{matrix}\right.\)

- Thay m ở PT(I) vào PT ( II ) ta được :\(y\left(y+2\right)=2\)

\(\Leftrightarrow y^2+2y-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=-1-\sqrt{3}\\y=-1+\sqrt{3}\end{matrix}\right.\)

- Thay lại y vào PT ( I ) ta được : \(\left[{}\begin{matrix}m=1-\sqrt{3}\\m=1+\sqrt{3}\end{matrix}\right.\)

Vậy tồn tại 2 giá trị của m là \(1\pm\sqrt{3}\) thỏa mãn yêu cầu đề bài .

 

thi anh
Xem chi tiết
Lê Thị Thục Hiền
6 tháng 7 2021 lúc 15:11

\(\left\{{}\begin{matrix}mx-y=2\\3x+my=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=mx-2\\3x+my=5\end{matrix}\right.\)

\(\Rightarrow3x+m\left(mx-2\right)=5\)

\(\Leftrightarrow x\left(3+m^2\right)=5+2m\)

\(\Leftrightarrow x=\dfrac{5+2m}{3+m^2}\Rightarrow y=\)\(\dfrac{m\left(5+2m\right)}{3+m^2}-2=\dfrac{5m-6}{3+m^2}\)

Suy ra với mọi m thì hệ luôn có nghiệm duy nhất \(\left(x;y\right)=\left(\dfrac{5+2m}{3+m^2};\dfrac{5m-6}{3+m^2}\right)\)

Có \(x+y=0\Leftrightarrow\dfrac{5+2m}{3+m^2}+\dfrac{5m-6}{3+m^2}=0\)\(\Rightarrow m=\dfrac{1}{7}\)

Vậy ...

Linh_Chi_chimte
Xem chi tiết
trần quang minh
11 tháng 1 2018 lúc 5:52

toi khong biet ma cac cau thay anh nen kieu nao vay 

wary reus
Xem chi tiết
Hoàng Lê Bảo Ngọc
14 tháng 1 2017 lúc 16:47

Mình sẽ giải bằng hai cách :)

Cách 1. Áp dụng định thức Grane, ta được :

\(D=m^2+3\), \(D_x=2m+5\), \(D_y=5m-6\)

Dễ thấy D > 0 nên hệ có nghiệm duy nhất

\(\left\{\begin{matrix}x=\frac{D_x}{D}=\frac{2m+5}{m^2+3}\\y=\frac{D_y}{D}=\frac{5m-6}{m^2+3}\end{matrix}\right.\). Hai nghiệm này thỏa mãn x + y < 1 tức là

\(\frac{7m-1}{m^2+3}< 1\Leftrightarrow m^2-7m+4>0\) \(\Leftrightarrow\left[\begin{matrix}m< \frac{7-\sqrt{33}}{2}\\m>\frac{7+\sqrt{33}}{2}\end{matrix}\right.\)

Hoàng Lê Bảo Ngọc
14 tháng 1 2017 lúc 16:49

Cách 2. Từ PT đầu rút ra được y = mx - 2 (*) thay vào PT còn lại :

\(3x+m.\left(mx-2\right)=5\Leftrightarrow x\left(m^2+3\right)=5+2m\)

\(m^2+3>0\) nên \(x=\frac{5+2m}{m^2+3}\) . Thay vào (*) được \(y=\frac{5m-6}{m^2+3}\)

Để x + y < 1 thì \(\frac{5+2m}{m^2+3}+\frac{5m-6}{m^2+3}< 1\)

Tới đây bạn tự giải được rồi :)