Cho A= \(\frac{5}{\sqrt{x}-1}\)
Tìm x ∈ Z để A có giá trị nguyên
cho A = \(\frac{2\sqrt{x}+5}{\sqrt{x}+1}\)
a) tìm x thuộc Z để A có giá trị nguyên
b) tìm giá trị lớn nhất của A ?
Cho A= \(\frac{5}{\sqrt{x}-1}\) Tìm x ϵ Z để B có giá trị nguyên
Để A nguyên thì \(\sqrt{x}-1\inƯ\left(5\right)\)
Mà Ư(5)={1;-1;5;-5}
=> \(\sqrt{x}-1\in\left\{1;-1;5;-5\right\}\)
Ta có bảng sau:
\(\sqrt{x}-1\) | 1 | -1 | 5 | -5 |
\(\sqrt{x}\) | 2 | 0 | 6 | -4 |
x | 4 | 0 | 36 | loại |
Vậy \(x\in\left\{0;4;36\right\}\)
Bài 1: Cho \(A=\frac{\sqrt{x}-3}{2}\) Tìm \(x\in Z\)và \(x< 30\)để A có giá trị nguyên
Bài 2: Cho \(B=\frac{5}{\sqrt{x}-1}\)Tìm \(x\in Z\)để B có giá trị nguyên
bai 1
A= \(\frac{\sqrt{x}-3}{2}\) . tìm x thuộc Z và x<30 để A có giá trị nguyên
bài 2
B = \(\frac{5}{\sqrt{x}-1}\)tìm x thuộc Z để B có gía trị nguyên
Cho biểu thức \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
a) Tính giá trị biểu thức A tại x=\(\frac{16}{9}\) và x=\(\frac{25}{9}\)
b) Tìm giá trị x để A=5
c) Tìm xϵ Z để A có giá trị là một số nguyên dương
a)Tại \(x=\frac{16}{9}\) ta có: \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{\frac{16}{9}}+1}{\sqrt{\frac{16}{9}}-1}=\frac{\frac{4}{3}+1}{\frac{4}{3}-1}=\frac{\frac{7}{3}}{\frac{1}{3}}=7\)
Tại \(x=\frac{25}{9}\) ta có: \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{\frac{25}{9}}+1}{\sqrt{\frac{25}{9}}-1}=\frac{\frac{5}{3}+1}{\frac{5}{3}-1}=\frac{\frac{8}{3}}{\frac{2}{3}}=4\)
b)Khi \(A=5\Rightarrow\frac{\sqrt{x}+1}{\sqrt{x}-1}=5\)(*)
Đk:\(\sqrt{x}-1\ne0\Rightarrow x\ne1;\sqrt{x}\ge0\Rightarrow x\ge0\)
Đặt \(\sqrt{x}+1=t\left(t\ge0\right)\),(*) trở thành
\(\frac{t}{t-2}=5\Rightarrow t=5\left(t-2\right)\)
\(\Rightarrow t=5t-10\)
\(\Rightarrow2t=5\Rightarrow t=\frac{5}{2}\)(thỏa mãn)
\(t=\frac{5}{2}\Rightarrow\sqrt{x}+1=\frac{5}{2}\)
\(\Rightarrow\sqrt{x}=\frac{3}{2}\Leftrightarrow\sqrt{x^2}=\left(\frac{3}{2}\right)^2\Leftrightarrow x=\frac{9}{4}\)(thỏa mãn)
Vậy \(x=\frac{9}{4}\)
Cho A=\(\frac{\sqrt{x+1}}{\sqrt{x-3}}\). Tìm x thuộc Z để A có giá trị là một số nguyên
Để A thuộc Z
=> A^2 thuộc Z
=> x-3+4/x-3 = 1+4/x-3 thuộc z
=> x-3 thuộc ước của 4 Giải ra
Cho A=\(\frac{\sqrt{x+1}}{\sqrt{x-3}}\). Tìm x thuộc Z để A có giá trị là một số nguyên
\(A=\frac{\sqrt{x+1}}{\sqrt{x-3}}\Leftrightarrow A^2=\frac{x+1}{x-3}.\)
\(\Leftrightarrow A^2=\frac{x-3+4}{x-3}=\frac{x-3}{x-3}+\frac{4}{x-3}=1+\frac{4}{x-3}\)
Để \(A\in Z\Leftrightarrow1+\frac{4}{x-3}\in Z\).
Mà \(1\in Z\)
\(\Leftrightarrow\frac{4}{x-3}\in Z\)
\(\Leftrightarrow\left(x-3\right)\inƯ_4=\left\{\pm2;\pm4;\pm1\right\}\)
Ta có bảng sau :
x-3 | 4 | -4 | 2 | -2 | 1 | -1 |
x | 7 | -1 | 5 | 1 | 4 | 2 |
Cho biểu thức \(B=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}+\frac{\sqrt{x}+3}{2-\sqrt{x}}\) .
a, Rút gọn B.
b, Tìm các giá trị \(x\in Z\) để B có giá trị nguyên.
B =\(\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\) + \(\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)- \(\frac{\sqrt{x}+3}{\sqrt{x}-2}\)( \(x\ge0\); \(x\ne2;3\))
= \(\frac{2\sqrt{x}-9+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)-x+9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
= \(\frac{2\sqrt{x}-9+2x-3\sqrt{x}-2-x+9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
= \(\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
= \(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
= \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
b, B = \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)= \(\frac{\sqrt{x}-3+4}{\sqrt{x}-3}\)= \(1+\frac{4}{\sqrt{x}-3}\)
để B có gtri nguyên thì \(\frac{4}{\sqrt{x}-3}\)phải nguyên
\(\Rightarrow\left(\sqrt{x}-3\right)\varepsilonƯ\left(4\right)\)
\(\Rightarrow\left(\sqrt{x}-3\right)\varepsilon\left\{1;-1;2;-2;4;-4\right\}\)
ta có bảng sau
\(\sqrt{x}-3\) 1 -1 2 -2 4 -4
\(\sqrt{x}\) 4 2 5 1 7 -1 (L)
x 16 4 25 1 49
vậy x \(\varepsilon\){ 16 ; 4 ; 25; 1 ; 49 }
#mã mã#
Cho A=\(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
a;TÌm x thuộc Z để A thuộc Z
b;Tìm X thuộc Z để A có giá trị nguyên lớn nhất
Mình Cần Gấp !!!
Cho A = \(\frac{\sqrt{x}-5}{\sqrt{x}+3}\)
a) Tìm x để A= -1
b) Tìm \(x\in Z\)để A nhận giá trị nguyên
a)\(A=\frac{\sqrt{x}-5}{\sqrt{x}+3}=\frac{\sqrt{x}+3-8}{\sqrt{x}+3}=1-\frac{8}{\sqrt{x}+3}\)
\(A=-1\Leftrightarrow1-\frac{8}{\sqrt{x}+3}=-1\)
\(\Leftrightarrow\frac{8}{\sqrt{x}+3}=2\)
\(\Leftrightarrow\sqrt{x}+3=4\)
\(\Leftrightarrow\sqrt{x}=1\)
\(\Leftrightarrow x=1\)
Vậy A = -1 \(\Leftrightarrow x=1\)
b) \(A=1-\frac{8}{\sqrt{x}+3}\)
\(A\inℤ\Leftrightarrow\frac{8}{\sqrt{x}+3}\inℤ\)hay \(8⋮\left(\sqrt{x}+3\right)\)
\(\Leftrightarrow\left(\sqrt{x}+3\right)\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm3;\pm4\right\}\)
Mà \(\sqrt{x}+3\ge3\)nên\(\Leftrightarrow\left(\sqrt{x}+3\right)\in\left\{3;4\right\}\)
\(TH1:\sqrt{x}+3=3\Leftrightarrow\sqrt{x}=0\Leftrightarrow x=0\)
\(TH2:\sqrt{x}+3=4\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)
Vậy \(x\in\left\{0;1\right\}\)thì A nguyên
a) Ta có: A=-1
=> \(\frac{\sqrt{x}-5}{\sqrt{x}+3}\)=-1
<=>\(\sqrt{x}-5=-\left(\sqrt{x}+3\right)\)
<=> \(2\sqrt{x}=2\)
<=> \(\sqrt{x}=1\)
<=> \(x=1\)
b) \(\frac{\sqrt{x}-5}{\sqrt{x}+3}=\frac{\sqrt{x}+3-8}{\sqrt{x}+3}\)
=> \(\frac{\sqrt{x}-5}{\sqrt{x}+3}=1-\frac{8}{\sqrt{x}+3}\)
A nhận giá trị nguyên khi \(\frac{8}{\sqrt{x}+3}\)là số nguyên, hay \(\sqrt{x}+3\)là ước số của 8. Dễ dàng tính được x=1, x=25