Tìm các số x , y , z : x/y+z - 2 = y / x + z - 3 = z / x + y + 5 = x + y + z
Tìm các số x, y, z biết: x + y = 2, y + z = 5, z + x = -3
1. Tìm các số x, y, z biết rằng:\(\frac{x}{5}=\frac{y}{6},\frac{y}{8}=\frac{z}{7}\) và x + y - z = 69
2. Tìm các số x, y, z biết rằng: \(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\) và 5z - 3x - 4y = 50
3. Tìm các số x, y, z, t biết rằng:
x: y: z : t = 15: 7 :3 :1 và x - y + z - t = 10
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
tìm các số nguyên x ,y, z biết x + y =2 y+z=3 z+x = -5
\(x\) + y = 2; ⇒ y = 2 - \(x\);
y + z = 3 ⇒ y = 3 - z
⇒ 2 - \(x\) = 3 - z ⇒ \(x\) = 2 - 3 + z ⇒ \(x\) = -1 + z
Thay \(x\) = -1 + z vào biểu thức z + \(x\) = -5 ta có:
z - 1 + z = -5
2z = -5 + 1 ⇒ 2z = -4 ⇒ z = -4: 2 ⇒ z = -2
Thay z = -2 vào biểu thức \(x\) = -1 + z ta có \(x\) = -1 -2 = -3
Thay z = -2 vào biểu thức y = 3 - z ta có: y = 3 - (-2) = 5
a)Tìm x,y thuộc z biết rằng (y+1).(xy-1)=3
b)tìm các số x,y,z biết rằng x+y=2 ;y+z=3 ;z+x=-5
Tìm các số x,y,z biết rằng : x+y= 2 ; y+z=3 ; z+x =-5
Tổng của 3 số x , y , z là :
( - 5 + 2 + 3 ) : 2 = 0
Vì x + y = 2 => z = 0 - 2 = - 2
Vì y + z = 3 => x = 0 - 3 = - 3
Vì z + x = - 5 => y = 0 - ( - 5 ) = 5
Vậy ( x , y , z ) = ( - 3 ; 5 ; - 2 }
1) Cho x, y, z là ba số dương phân biệt. Hãy tìm tỉ số x/y ,biết rằng:
y/x-z=x+y/z=x/y
2) Tìm các số x, y, z , biết rằng
x-1/2=y+3/4=z-5/6 và 5z-3x-4y=50
x(x+y+z)=-5,y(x+y+z)=9,z(x+y+z)=5. Tìm các số hữu tỉ x y z
Theo đầu bài ta có:
\(\hept{\begin{cases}x\left(x+y+z\right)=-5\\y\left(x+y+z\right)=9\\z\left(x+y+z\right)=5\end{cases}}\)
\(\Rightarrow x\left(x+y+z\right)+y\left(x+y+z\right)+z\left(x+y+z\right)=-5+9+5\)
\(\Rightarrow\left(x+y+z\right)\left(x+y+z\right)=4+5\)
\(\Rightarrow\left(x+y+z\right)^2=9\)
\(\Rightarrow x+y+z=3\)
\(\Rightarrow\hept{\begin{cases}x=-\frac{5}{x+y+z}=-\frac{5}{3}\\y=\frac{9}{x+y+z}=3\\z=\frac{5}{x+y+z}=\frac{5}{3}\end{cases}}\)
Tìm các số x;y;z biết:
y+z+1/x=x+z+2/y=x+y-3/z=1/x+y+z
Tìm các số thực x,y,z biết: x+y-3/z=y+z+1/x=x+z+2/y=1/x+y+z