Tìm x, y biết: \(x^2-x+y^2+y+\frac{1}{2}=0\)
\(\frac{x}{y+2+1}=\frac{y}{x+2+1}=\frac{z}{x+y-2}=x+y=z\)
biết x,y,z khác 0
Tìm y
sorry mấy bạn =x+y+z chứ ko phải =x+y=z :P
1. Cho a, b là các hằng số dương. Tìm min A=x+y biết x>0, y>0; \(\frac{a}{x}+\frac{b}{y}=1\)
2.Tìm \(a\in Z\), a#0 sao cho max và min của \(A=\frac{12x\left(x-a\right)}{x^2+36}\)cũng là số nguyên
3. Cho \(A=\frac{x^2+px+q}{x^2+1}\) . Tìm p, q để max A=9 và min A=-1
4. Tìm min \(P=\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+xz}\) với x,y,z>0 ; \(x^2+y^2+z^2\le3\)
5. Tìm min \(P=3x+2y+\frac{6}{x}+\frac{8}{y}\) với \(x+y\ge6\)
6. Tìm min, max \(P=x\sqrt{5-x}+\left(3-x\right)\sqrt{2+x}\) với \(0\le x\le3\)
7.Tìm min \(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\) với x>0, y>0; x+y=1
8.Tìm min, max \(P=x\left(x^2+y\right)+y\left(y^2+x\right)\) với x+y=2003
9. Tìm min, max P = x--y+2004 biết \(\frac{x^2}{9}+\frac{y^2}{16}=36\)
10. Tìm mã A=|x-y| biết \(x^2+4y^2=1\)
Bài 1: Tìm x và y, biết:
\(\frac{x}{y}=\frac{5}{3}\left(x^2+y^2=4\right)\) (x và y là 2 số tự nhiên khác 0 )
Bài 2: Tìm x; y; z biết: \(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\left(x+y+z=138\right)\)
\(\frac{x}{y}=\frac{5}{3}\Rightarrow\frac{x}{5}=\frac{y}{3}\)
\(\Rightarrow\frac{x^2}{5^2}=\frac{y^2}{3^2}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{x^2}{5^2}=\frac{y^2}{3^2}=\frac{x^2+y^2}{5^2+3^2}=\frac{4}{34}=\frac{2}{17}\)
\(\Rightarrow\hept{\begin{cases}x^2=\frac{50}{17}\\y^2=\frac{18}{17}\end{cases}}\) mà x,y là số tự nhiên nên ko có x,y thỏa mãn
Bài 2:
\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{5}=\frac{z}{7}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{y}{15}\\\frac{y}{15}=\frac{z}{21}\end{cases}}}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng t/c dãy tỉ số bằng nhau:
Bạn tự làm nha
Bài 1 :
\(\frac{x}{y}=\frac{5}{3}\)
\(\Rightarrow\frac{x}{5}=\frac{y}{3}\)( từ đây ra được là x ; y cùng dấu )
\(\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2+y^2}{25+9}=\frac{4}{34}=\frac{2}{17}\)
\(\Rightarrow x\in\left\{-\frac{5\sqrt{34}}{17};\frac{5\sqrt{34}}{17}\right\}\)
\(y\in\left\{-\frac{3\sqrt{34}}{17};\frac{3\sqrt{34}}{17}\right\}\)
Mà x ; y cùng dấu nên :
\(\left(x;y\right)\in\left\{\left(\frac{5\sqrt{34}}{17};\frac{3\sqrt{34}}{17}\right);\left(\frac{-5\sqrt{34}}{17};\frac{-3\sqrt{34}}{17}\right)\right\}\)
Bài 2 :
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{138}{46}=3\)
\(\frac{x}{10}=3\Rightarrow x=30\)
\(\frac{y}{15}=3\Rightarrow y=45\)
\(\frac{z}{21}=3\Rightarrow z=63\)
Tìm GTNN,biết: \(x>0;y>0;x+y=1\)
\(E=\frac{1}{x^2y^2}-\frac{1}{x^2}-\frac{1}{y^2}\)
Nugget nghĩ pạn ghi lộn đề! Vì nếu x>0; y>0 -> x=1 và y=1 (giả thiết) thì làm sao x+y=1 được???
Thui Nugget về Kindergarten đây, tạm biệt.
\(E=\frac{1-x^2-y^2}{x^2y^2}\left(quydonglen\right)\)
\(E=\frac{\left(x+y\right)^2-x^2-y^2}{x^2y^2}\left(x+y=1\right)\)
\(E=\frac{2xy}{x^2y^2}=\frac{2}{xy}\)
\(\left(x+y\right)^2\ge4xy\Rightarrow xy\le\frac{1}{4}\Rightarrow\frac{2}{xy}\ge\frac{2}{\frac{1}{4}}=8\Rightarrow M_{min}=8.Dau:"="\Leftrightarrow x=y=\frac{1}{2}\)
tìm x,y,z biết:
a, \(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z\)
b,(x-11+y)2+(x-y-4)2=0
A. dk \(\hept{\begin{cases}y+z+1\ne0\\x+z+1\ne0\\x+y\ne2\end{cases}}\)
Ap dung tinh chat day ti so bang nhau ta co
\(\frac{x}{y+z+1}=\frac{y}{x+z+1}\frac{z}{x+y-2}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\) (1)
=> \(x+y+z=\frac{1}{2}\) (*) => y+z =1/2 - x
(1) suy ra \(y+z+1=2x\)
<=> \(\frac{1}{2}-x+1=2x\Rightarrow x=\frac{1}{2}\)
thay vao (*) => y+z=0
tu (1) lai suy ra \(x+z+1=2y\)
<=> \(\hept{\begin{cases}z+y=0\\\frac{1}{2}+z+1=2y\end{cases}\Rightarrow\hept{\begin{cases}z=\frac{-1}{2}\\y=\frac{1}{2}\end{cases}}}\)
vay \(\left\{x;y;z\right\}=\left\{\frac{1}{2};\frac{1}{2};\frac{-1}{2}\right\}\)
b, \(\left(x-11+y\right)^2+\left(x-y+4\right)^2=0\)
<=> \(\hept{\begin{cases}x-11+y=0\\x-y-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{15}{2}\\y=\frac{7}{2}\end{cases}}}\)
Vay \(\left\{x;y\right\}=\left\{\frac{15}{2};\frac{7}{2}\right\}\)
Tìm GTNN \(\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\) biết x,y >0. x+y=1
Tìm x, y biết : \(x^2-x+y^2+y+\frac{1}{2}=0\)
\(x^2-x+y^2+y+\frac{1}{2}=0\)
\(\Leftrightarrow x^2-x+y^2+y+\frac{1}{4}+\frac{1}{4}=0\)
\(\Leftrightarrow\left(x^2-x+\frac{1}{4}\right)+\left(y^2+y+\frac{1}{4}\right)=0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\left(y+\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{-1}{2}\end{cases}}\)
Tìm x,y,z biết: \(\frac{x}{z+y+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z\)(x,y,z khác 0)
Dùng tính chất tỉ lệ thức:
x+y+z = 0\(\frac{x}{\left(y+z+1\right)}=\frac{y}{\left(x+z+1\right)}=\frac{z}{\left(x+y-2\right)}=0\Rightarrow x=y=z=0\)
Áp dụng tính chất tỉ lệ thức:
\(x+y+z=\frac{x}{\left(y+z+1\right)}=\frac{y}{\left(x+z+1\right)}=\frac{z}{\left(x+y-2\right)}=\left(\frac{x+y+z}{2x+2y+2z}\right)=\frac{1}{2}\)
=> x+y+z = \(\frac{1}{2}\)
+) \(2x=y+z+1=\frac{1}{2}-x+1\Rightarrow x=\frac{1}{2}\)
+) \(2y=x+z+1=\frac{1}{2}-y+1\Rightarrow y=\frac{1}{2}\)
+) \(z=\frac{1}{2}-\left(x+y\right)=\frac{1}{2}-1=\frac{-1}{2}\)
TA CÓ: \(\frac{x}{z+y+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=\frac{x+y+z}{z+y+1+x+z+1+x+y-2}=\frac{1.\left(x+y+z\right)}{\left(1+1-2\right)+2x+2y+2z}\)
\(=\frac{1.\left(x+y+z\right)}{0+2.\left(x+y+z\right)}=\frac{1.\left(x+y+z\right)}{2.\left(x+y+z\right)}=\frac{1}{2}\)
\(\Rightarrow x+y+z=\frac{1}{2}\)
\(\Rightarrow\frac{x}{z+y+1}=\frac{1}{2}\)\(\Rightarrow2x=z+y+1\)\(\Rightarrow3x=x+z+y+1\)\(\Rightarrow3x=\frac{1}{2}+1\Rightarrow3x=\frac{3}{2}\Rightarrow x=\frac{1}{2}\)
\(\frac{y}{x+z+1}=\frac{1}{2}\)\(\Rightarrow2y=x+z+1\Rightarrow3y=y+x+z+1\Rightarrow3y=\frac{1}{2}+1=\frac{3}{2}\Rightarrow y=\frac{1}{2}\)
\(\frac{z}{x+y-2}=\frac{1}{2}\)\(\Rightarrow2z=x+y-2\Rightarrow3z=x+y+z-2\Rightarrow3z=\frac{1}{2}-2=\frac{-3}{2}\Rightarrow z=\frac{-1}{2}\)
VẬY X= 1/2; Y= 1/2 ; Z= -1/2
CHÚC BN HỌC TỐT!!!!!!
1) Cho x,y>0 và x+y=< 1 Tìm min A = \(\frac{1}{x^2+y^2}+\frac{1}{xy}\)
2) Cho x >= 3y và x;y > 0 Tìm min A = \(\frac{x^2+y^2}{xy}\)
3) Cho x >= 4y và x;y > 0 Tìm min A = xy/(x^2 +y^2)
\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)
\(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)
Dấu "=" <=> x= y = 1/2
\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)
\(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)
Dấu "=" <=> x = 3y
Tìm x, y biết: \(x^2-x+y^2+y+\frac{1}{2}=0\)0
Giúp mình với, please!
\(X^2-X+Y^2+Y+\frac{1}{2}=0\)
<=> \(\left(X^2-2X\frac{1}{2}+\frac{1}{4}\right)+\left(Y^2+2Y\frac{1}{2}+\frac{1}{4}\right)=0\)
<=>\(\left(X-\frac{1}{2}\right)^2+\left(Y+\frac{1}{2}\right)^2=0\)
Vì \(\left(X-\frac{1}{2}\right)^2\ge0\forall X\) , ,\(\left(Y+\frac{1}{2}\right)^2\ge0\forall Y\)
=> \(VT\ge0\forall X;Y\)
mà VT = 0
Từ 2 điều trên => \(\hept{\begin{cases}\left(X-\frac{1}{2}\right)^2=0\\\left(Y+\frac{1}{2}\right)^2=0\end{cases}}\)
<=>\(\hept{\begin{cases}X-\frac{1}{2}=0\\Y+\frac{1}{2}=0\end{cases}}\)
<=>\(\hept{\begin{cases}X=\frac{1}{2}\\Y=-\frac{1}{2}\end{cases}}\)
kết luận: