Tìm m để đường thẳng y=x+m^2+2 và đường thẳng y=(m-2)x+11 cắt nhau tại một điểm trên trục tung
1. tìm m để các đường thẳng y= 2x + m và y= x - 2m + 3 cắt nhau tại một điểm nằm trên trục tung
2. tìm tọa độ giao điểm của 2 đường thẳng trên khi m=1
1. Giả sử hai đường thẳng cắt nhau tại điểm M(x0; y0) trên trục tung
=> x0 = 0 => Thay toạ độ của M vào 2 đường thẳng ta có: (d): y0 = m và (d'): y0 = 3 - 2m
Xét phương trình hoành độ giao điểm: m = 3 - 2m ⇔ 3m = 3 ⇔ m = 1
=> Với m = 1 thì 2 đường thẳng cắt nhau tại điểm trên trục tung
2. Với m = 1 => y0 = 1 => 2 đường thẳng cắt nhau tại điểm M(0; 1)
a, A = b, 2, Cho hai đường thẳng (d1): y = (2m-5).x – m – 2 và (d2): y = - 3 – x. Tìm m để hai đường thẳng cắt nhau tại một điểm nằm trên trục tung.
PTHDGD: \(\left(2m-5\right)x-m-2=-3-x\)
2 đt cắt tại 1 điểm trên trục tung nên x=0
\(\Leftrightarrow-m-2=-3\Leftrightarrow m=1\)
Tìm m để 2 đường thẳng y=2x+4m và đường thẳng y=(m-1)x+m2+3 cắt nhau tại 1 điểm trên trục tung
Để 2 đường cắt nhau tại trục tung thì
m-1<>2 và m^2+3=4m
=>m<>3 và m^2-4m+3=0
=>m=1
Tìm m để đường thẳng y = x + m2 + 1 và đường thẳng y = (m - 1)x +5 cắt nhau tại một điểm trên trục tung
Cho 2 đường thẳng d : y = x + 3 và d1 : y = -2x + m2 - 1 . Tìm m để hai đường thẳng cắt nhau tại 1 điểm trên trục tung
cho 2 đường thẳng (d) y=(m-3)x+16 và (d') y=x+m^2 tìm m để (d) và (d') cắt nhau tại 1 điểm trên trục tung
Trong mặt phẳng Oxy, cho 2 đường thẳng (d): y= (m-3)x + n + 5 và (d'): y=-2x + 1. Tìm giá trị của m,n để hai đường thẳng (d) và (d') cắt nhau tại một điểm trên trục tung
Để hai đường cắt nhau trên trục tung thì n+5=1 và m-3<>-2
=>n=-4 và m<>1
Để hai đường cắt nhau trên trục tung thì n+5=1 và m-3<>-2
=>n=-4 và m<>1
Cho hai đường thẳng y = 2 x + 6 và y = - x + m + 2 . Khi đó, giá trị của tham số m để hai đường thẳng cắt nhau tại một điểm trên trục tung là:
A. m = 4
B. m = 3
C. m = 2
D. m = 1
Đường thẳng y = 2 x + 6 cắt trục tung tại điểm A(0; 6) .
Để hai đường thẳng đã cho cắt nhau tại 1 điểm thuộc trục tung thì điểm A(0; 6) thuộc đường thẳng y = -x + m + 2 .
Suy ra 6 = m + 2 ⇔ m = 4 .
Tìm m để đường thẳng y = x + m2 + 1 và đường thẳng y = (m - 1)x +5 cắt nhau tại một điểm trên trục tung
Gọi giao điểm của 2 đường thẳng đó trên trục tung là A( 0;a )
Khi đó tọa độ điểm A( 0;a ) thỏa mãn hpt \(\hept{\begin{cases}a=m^2+1\\a=5\end{cases}}\)
\(\Rightarrow m^2+1=5\)
\(\Rightarrow m^2=4\)
\(\Rightarrow m=\pm2\)
Vậy \(m=\pm2\)