Cho tam giác ABC vuông tại A, góc B = 50 độ. Kẻ đường cao AH (H thuộc BC), đường phân giác trong CK (K thuộc AB). Xác định góc giữa 2 vecto AH và CK.
cho tam giác ABC vuông tại A biết AB=6cm,AC=8cm. a)tính BC b)tia phân giác của góc B cắt cạnh AC tại D kẻ DE vuông góc BC(E thuộc BC) gọi K là giao điểm của tia ED và đường thẳng AB chứng minh tam giác ABD = tam giác EBD c)chứng minh tam giác KDC cân d)kẻ AH vuông góc CK(H thuộc CK) và tia BD cắt CK tại I chứng minh AH song song BI
làm ơn giúp mik với mik đang gấp
Cho tam giác ABC vuông tại A, kẻ đường cao AH và phân giác BE (H thuộc BC, E thuộc AC) Kẻ AD vuông góc BE ( D thuộc BE)
a) CM ADHB nội tiếp trong 1 đường tròn. Xác định tâm O của đường tròn đó
b) CM ^EAD= ^HBDvà OD // HB
c) biết góc ABC=60 độ , và AB = a ( a>0) Tính theo a phần diện tích tam giác ABC nằm ngoài đường tròn O
ai biết giải giúp minh với:
Câu 1:Cho tam giác ABC có 3 góc nhọn,các đường cao AD,BE,CK cắt nhau tại H.chứng minh
a,tứ giác HECD nội tiếp
b,Tia DA là tia phân giác góc EDK
Cây 2:cho tam giác ABC vuông tai A,biết ab=6cm,ac=8cm
A.tính bc
B,kẻ đường cao AH,tính Ah
Câu 3:Cho tam giác abc vuông tại A,BIẾT AC=4cm,Bc=5cm.
A,Tính cạnh AB
B,kẻ đường cao AH,TÍNH AH
Câu 4:Cho tam giác vuông ABC,vuông tại A(H thuộc BC).bIẾT AB=12CM,AC=5CM.tính BH,CH
Câu 5:cho tam giác ABC vuông tại A,đường cao AH(H THUỘC BC).biết BC=18cm,BH=6cm.Tính độ dài các cạnh AB,AC
Cau 6:Cho tam giác ABC,vuông tại A,biết AB=4cm,đường cao AH=2CM,tính các góc và các cạnh còn lại cua tam giac.?
bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!
rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ
Bài 1: Cho tam giác ABC vuông tại C. góc A=60 độ .Vẽ đường phân giác góc BAC cắt BC tại E.Kẻ EK vuông góc với AB tại K(K thuộc AB).Kẻ BD vuông góc với AE tại D(D thuộc AE) .Cm:
a,Tam giác ACE=tam giác AKE
b,AE là đường trung trực của đoạn thẳng CK
c,KA=Kb
d, EB<AE
Bài 2: Cgo tam giác ABC vuông tại A , có đường phân giác góc ABC cắt AC tại E . Kẻ EH vuông góc với BC tại H ( H thuộc BC).CM:
a,Tam giác ABE=tam giác HBE
b,BE là đường trung trực của AH
c, EC>AE
Cho tam giác ABC vuông tại A , đường phân giác BE , Kẻ EH vuông góc với BC ( H thuộc BC ) , gọi K là giao điểm của AB và HE , chứng minh rằng :
a, tính độ dài AC, Biết AB=6m; BC=10cm
b, Chứng minh AB=HB; AE<EC
c, Chứng minh BE vuông góc CK; AH//KC
d, Nếu góc ABC= 60 độ thì tam giác BAH là tam giác gì ? Vì sao?
a. Áp dụng đ/l Pytago có
\(AC^2=BC^2-AB^2=100-36\)
=> AC = 8 (cm)
b/ Xét t/g ABE vg tại A và t/g HBE cg tại H có
BE chung
\(\widehat{ABE}=\widehat{CBE}\)
=> t/g ABE = t/g HBE
=> AB = HB ; AE = HE (*)
Xét t/g HEC vg tại H => EC > HE
=> AE < EC
c/ Xét t.g BCK có
KH vg góc BC
CA vg góc BK
CA cắt HK tại E
=> E là trực tâm t/g BCK
=> BE ⊥ CK (1)
(*) => BE là đường trung trực của AH
=> BE ⊥ AH (2)
(1) ; (2)
=> CK // AH
d/ Xét t.g BAH có AB = AH ; \(\widehat{ABH}=60^o\)
=> t/g BAH đều
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=10^2-6^2=64\)
hay AC=8(cm)
Vậy: AC=8cm
b) Xét ΔAEB vuông tại A và ΔHEB vuông tại H có
BE chung
\(\widehat{ABE}=\widehat{HBE}\)(BE là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔAEB=ΔHEB(cạnh huyền-góc nhọn)
Suy ra: AB=HB(hai cạnh tương ứng)
Cho tam giác ABC vuông tại A. Đường phân giác góc ABC cắt AC ở E. Kẻ EH vuông góc với BC {H thuộc BC}.Đường thẳng HE cắt AB ở K
a,Chứng minh tam giác ABE = tam giác HBE đó suy ra BE là Đường trung trực của AH
b,Chứng minh BE vuông góc với CK
a, xét tam giác ABE và tam giác HBE có : BE chung
góc ABE = góc HBE do BE là phân giác
góc BAE = góc BHE = 90
=> tam giác ABE = tam giác HBE (ch - gn)
Cho tam giác ABC vuông tại A có góc B< góc C , đường cao AH. trên tia CH lấy điểm E sao cho HE=HC. Kẻ EI vuông góc với AB, BK vuông góc với AE ( I thuộc AB, K thuộc đường thẳng AE)
a) chứng minh: E nằm giữa B và H và BC là tia phân giác của góc ABK
b) Xác định trực tâm của tam giác AEB
Cho tam giác ABC cân tại A. Từ B kẻ BH vuông góc với AC ( H thuộc AC ), từ C kẻ CK vuông góc với AB (K thuộc AB).
a) chứng minh tam giác AHB = tam giác AKC
b) Biết AB=10cm, BH=8cm. Tính độ dài AH?
c) Gọi E là giao điểm của BH và CK. AE là tia phân giác góc A
( ghi GT và KL)
a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc BAH chung
=>ΔAHB=ΔAKC
b: AH=căn 10^2-8^2=6cm
c: Xét ΔAKE vuông tại K và ΔAHE vuông tại H có
AE chung
AK=AH
=>ΔAKE=ΔAHE
=>góc KAE=góc HAE
=>AE là phân giác của góc BAC
cho tam giac ABC có AB = AC và góc A nhọn kẻ đoạn thẳng BH VUÔNG AC (H thuộc AC).Kẻ đoạn thẳng CK vuông góc với AB (K thuộc AB).BH VÀ CK cắt nhau tại O.Chứng minh:
A)AH=AK
B)TAM GIÁC BOK=TAM GIÁC
C)AO là tia phân giác của góc BAC
D)đường thẳng AO là trung điểm của đoạn thẳng BC