Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyển phương linh
Xem chi tiết
Nguyễn Phương Linh
Xem chi tiết
Nguyễn Anh Duy
10 tháng 11 2016 lúc 20:47

Giả sử \(7n+13\)\(2n+4\) cùng chia hết cho số nguyên tố d

Ta có: \(7\left(2n+4\right)-2\left(7n+13\right)⋮d\rightarrow2⋮d\rightarrow d\in\left\{1;2\right\}\)

Để \(\left(7n+13;2n+4\right)=1\) thì \(d\ne2\)

Ta có: \(2n+4\) luôn chia hết cho \(2\) khi đó \(7n+13\) không chia hết cho \(2\) nếu \(7n\) chia hết cho \(3\) hay \(n\) chia hết cho \(2.\)
=> Với \(n\) chẵn thì thì \(7n+13\)\(2n+4\) là hai số nguyên tố cùng nhau

 
Trần Minh An
9 tháng 3 2017 lúc 20:50

Đặt (7n + 13; 2n + 4) = d

\(\Rightarrow\) \(\left\{{}\begin{matrix}7n+13⋮d\\2n+4⋮d\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}2\left(7n+13\right)⋮d\\7\left(2n+4\right)⋮d\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}14n+26⋮d\\14n+28⋮d\end{matrix}\right.\)

\(\Rightarrow\) (14n + 28) - (14n + 26) \(⋮\) d

\(\Rightarrow\) 2 \(⋮\) d

\(\Rightarrow\) d \(\in\) Ư(2) = \(\left\{1;2\right\}\)

mà 7n + 13 \(⋮̸\)2

\(\Rightarrow\) d = 1

Vậy (7n + 13; 2n + 4) = 1

Nguyễn Vũ Quỳnh Trang
Xem chi tiết
nguyễn thị minh ngọc
30 tháng 11 2016 lúc 12:34

n=3

Nguyễn Hữu Bảo Khanh
15 tháng 3 2020 lúc 21:13

n=3

Khách vãng lai đã xóa
Võ Thị Thảo Minh
Xem chi tiết
kiều thanh thủy
Xem chi tiết
Đỗ Lê Tú Linh
10 tháng 11 2016 lúc 21:23

a)Gọi ƯCLN(3n+5;2n+3)=d

=> 3n+5 chia hết cho d => 2(3n+5) chia hết cho d hay 6n+10 chia hết cho d

=>2n+3 chia hết cho d => 3(2n+3) chia hết cho d=> 6n+9 chia hết cho d

=>6n+10-(6n+9) chia hết cho d

=>1 chia hết cho d hay d=1

Do đó, ƯCLN(3n+5;2n+3)=1

Vậy 3n+5; 2n+3 là hai số nguyên tố cùng nhau

b)Gọi ƯCLN(5n+2;7n+3)=a

=>5n+2 chia hết cho a => 7(5n+2) chia hết cho a=> 35n+14 chia hết cho a

=>7n+3 chia hết cho a =>5(7n+3) chia hết cho a=> 35n+15 chia hết cho a

=> 35n+15-(35n+14) chia hết cho a

=>1 chia hết cho a hay a=1

Do đó, ƯCLN(5n+2;7n+3)=1

Vậy 5n+2 và 7n+3 là hai số nguyên tố cùng nhau

Sakuraba Laura
2 tháng 12 2017 lúc 5:14

a) Gọi d là ƯCLN(3n+5, 2n+3), d \(\in\)N*

\(\Rightarrow\hept{\begin{cases}3n+5⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(3n+5\right)⋮d\\3\left(2n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+10⋮d\\6n+9⋮d\end{cases}}}\)

\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(3n+5,2n+3\right)=1\)

\(\Rightarrow\) 3n+5 và 2n+3 là hai số nguyên tố cùng nhau.

b) Gọi d là ƯCLN(5n+2,7n+3), d \(\in\)N*

\(\Rightarrow\hept{\begin{cases}5n+2⋮d\\7n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}7\left(5n+2\right)⋮d\\5\left(7n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}35n+14⋮d\\35n+15⋮d\end{cases}}}\)

\(\Rightarrow\left(35n+15\right)-\left(35n+14\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(5n+2,7n+3\right)=1\)

\(\Rightarrow\) 5n+2 và 7n+3 là hai số nguyên tố cùng nhau.

Nguyễn Phương Linh
Xem chi tiết
Lightning Farron
10 tháng 11 2016 lúc 21:28

a)Gọi UCLN(3n+5;2n+3)=d

Ta có:

[2(3n+5)]-[3(2n+3)] chia hết d

=>[6n+10]-[6n+9] chia hết d

=>1 chia hết d

=>3n+5 và 2n+3 là 2 số nguyên tố cùng nhau

b)Gọi UCLN(5n+2;7n+3)=d

Ta có:

[5(7n+3)]-[7(5n+2)] chia hết d

=>[35n+15]-[35n+14] chia hết d

=>1 chia hết d

=>5n+2 và 7n+3 là hai số nguyên tố cùng nhau

Nguyễn Ngọc Tú
Xem chi tiết
Nguyễn Quang Tùng
11 tháng 1 2017 lúc 21:18

gọi ước chung lớn nhất của 4n + 3 và 2n + 3 là d 

ta có 2n + 3 chia hết cho d 

=> 2( 2n + 3) chia hết cho d 

=> 4n + 6 chia hết cho d 

=> ( 4n + 6 ) - ( 4n + 3) chia hết cho d 

=> 4n + 6 - 4n - 3 chia hết cho d 

=> 3 chia hết cho d 

=> d = { 1,3}

để 2 số nguyên tố cùng nhau thì 2 số không chia hết cho 3 

=> n = 1,... t=B tự tìm nhé

Nguyễn Hoàng Thiên Hương
Xem chi tiết
phạm thuỳ linh
24 tháng 7 2016 lúc 16:08

Tìm số tự nhiên n để 2n+3 và 4n + 1 là hai số nguyên tố cùng nhau

Toán lớp 6 Ước chung

Huỳnh Mai Phương
23 tháng 11 2016 lúc 16:42

Gọi d e ƯC ( 2n+3;4n+1)

suy ra:

(2n+3) chia hết cho d , suy ra 4.(2n+3) chia hết cho d

                                  suy ra 8n+3 chia hết cho d

suy ra

(4n+1) chia hết cho d , suy ra: 2.(4n+1) chia hết cho d

                                  suy ra: 8n+1 chia hết cho d

suy ra : (8n+3)-(8n+1) chia hết cho d

suy ra: 2 chia hết cho d

suy ra : d thuộc Ư(2)

suy ra : d thuộc {1,2}

vì d thuộc Ư(2n+3) mà 2n+3 là số lẻ nên d là số lẻ

suy ra: d khác 2 suy ra: d=1, suy ra: ƯCLN (2n+3;4n+1) = 1

vậy : 2n+3 và 4n+1 là 2 số nguyên tố cùng nhau

Linh Tran
Xem chi tiết
Lê Doãn Gia Hân
Xem chi tiết
33. Nguyễn Minh Ngọc
25 tháng 10 2020 lúc 10:42

a) Đề:..........

Gọi d là ƯC của 7n + 10; 5n + 7

=> \(\hept{\begin{cases}7n+10⋮d\\5n+7⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5.\left(7n+10\right)⋮d\\7.\left(5n+7\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}35n+50⋮d\\35n+49⋮d\end{cases}}\)

=> (35n + 50) - (35n + 49) chia hết cho d

=> 1 chia hết cho d

=> d = 1

Vậy 7n + 10 và 5n + 7 là hai số nguyên tố cùng nhau

b) Đề:............

Gọi d là ƯC của 2n + 3; 4n + 8

=> \(\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2.\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\)

=> (4n + 8) - (4n + 6) chia hết cho d

=> 2 chia hết cho d

=> d thuộc Ư(2)

=> d = {1; 2}

Mà 2n + 3 là số lẻ (không thỏa mãn)

=> 1 chia hết cho d

Vậy 2n + 3 và 4n + 8 là hai số nguyên tố cùng nhau.

Khách vãng lai đã xóa