Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyenvanhoang
Xem chi tiết
nguyenvanhoang
10 tháng 11 2014 lúc 6:31

làm lời giải ra cho mình

Changhu
Xem chi tiết
Dương Mai Ngân
Xem chi tiết
Chibi Anime
Xem chi tiết
mơ nhiều tưởng thật
Xem chi tiết
Nguyễn Lê Thành Vinh Thi...
10 tháng 1 2018 lúc 21:55

cả 2 số ko thể là số nguyên tố được vì ta có 2^n−1,2n,2^n+1 là 3 số nguyên liên tiếp nên có 1 số chia hết cho 3 

mà 2n không chia hết cho 3 nên trong 2 số  2^n−1,2^n+1 có 1 số chia hết cho 3 và lớn hơn 3 (do n>2)

vậy 2 số trên ko đồng thời là số nguyên tố

^ là mũ  nhé

mơ nhiều tưởng thật
Xem chi tiết
mơ nhiều tưởng thật
9 tháng 1 2018 lúc 20:35

các bạn làm ơn giúp mik

Luôn Vui Tươi
Xem chi tiết
Phạm Bảo Châu (team ASL)
19 tháng 9 2020 lúc 19:39

để n+3 và n-4 đều là số nguyên tố, n = 4 (4+3=7; 4-4=0)

Khách vãng lai đã xóa
Phạm Đức Kiên
Xem chi tiết
Nguyễn Hữu Trí
29 tháng 1 2022 lúc 7:33
n = 3. Nhưng tui học lớp 5...
Khách vãng lai đã xóa
⚚ßé Só¡⁀ᶦᵈᵒᶫ
29 tháng 1 2022 lúc 7:35

Nếu n = 2 => n + 2 =2+2= 4 chia hết cho 2,  là hợp số < loại >

Nếu n = 3 => n + 2 =3+2= 5 ; n + 4 =3+4= 7 là Số Nguyên Tố < thỏa mãn > 

Nếu n > 3 => n sẽ có 2 dạng là: 3k + 1; 3k + 2 ( k thuộc N*)

Với n = 3k + 1 => n + 2 = 3k+ 1 + 2 = 3k + 3=3.(k+1) chia hết cho 3 , là hợp số < loại >

Với n = 3k + 2 => n + 4 = 3k + 2+ 4 = 3k + 6 =3.(k+2)chia hết cho 3 , là hợp số < Loại >

Vậy n = 3 

Khách vãng lai đã xóa
Minh Hiếu
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 1 2022 lúc 0:02

1.

\(x^4+4y^4=x^4+4x^2y^2+y^4-4x^2y^2=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)

\(=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)

Do x, y nguyên dương nên số đã cho là SNT khi:

\(x^2-2xy+2y^2=1\Rightarrow\left(x-y\right)^2+y^2=1\)

\(y\in Z^+\Rightarrow y\ge1\Rightarrow\left(x-y\right)^2+y^2\ge1\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=1\)

Thay vào kiểm tra thấy thỏa mãn

2. \(N=n^4+4^n\)

- Với n chẵn hiển nhiên N là hợp số

- Với \(n\) lẻ: \(\Rightarrow n=2k+1\)

\(N=n^4+4^n=n^4+4^{2k+1}=n^4+4.4^{2k}+4n^2.4^k-n^2.4^{k+1}\)

\(=\left(n^2+2.4^k\right)^2-\left(n.2^{k+1}\right)^2=\left(n^2+2.4^k-n.2^{k+1}\right)\left(n^2+2.4^k+n.2^{k+1}\right)\)

Mặt khác:

\(n^2+2.4^k-n.2^{k+1}\ge2\sqrt{2n^2.4^k}-n.2^{k+1}=2\sqrt{2}n.2^k-n.2^{k+1}\)

\(=n.2^{k+1}\left(\sqrt{2}-1\right)\ge2\left(\sqrt{2}-1\right)>1\)

\(\Rightarrow N\) là tích của 2 số dương lớn hơn 1

\(\Rightarrow\) N là hợp số

Nguyễn Việt Lâm
12 tháng 1 2022 lúc 15:09

Bài 4 chắc không có cách "đại số" nào (tức là dựa vào lý luận chia hết tổng quát) để giải. Mình nghĩ vậy (có lẽ có, nhưng mình ko biết).

Chắc chỉ sáng lọc và loại trừ theo quy tắc kiểu: do đổi vị trí bất kì đều là SNT nên không thể chứa các chữ số chẵn và chữ số 5, như vậy số đó chỉ có thể chứa các chữ số 1,3,7,9

Nó cũng không thể chỉ chứa các chữ số  3 và 9 (sẽ chia hết cho 3)

Từ đó sàng lọc được các số: 113 (và các số đổi vị trí), 337 (và các số đổi vị trí)