Cho a+b+c=2018,1/a+1/b+1/c=1/2018.Tính a^2017+b^2017+c^2017
cho 3 số a b c thỏa mãn ab+bc+ca=2018abc và 2018(a+b+c)=1.Tính M=a2017+b2017+c2017
Cho a ; b \(\ne\) 0 tm : \(\dfrac{ab+1}{b}=\dfrac{bc+1}{c}=\dfrac{ca+1}{a}\) . Cm : \(a^{2017}+\dfrac{1}{b^{2018}}=b^{2017}+\dfrac{1}{c^{2018}}=c^{2017}+\dfrac{1}{a^{2018}}\)
cho a+b+c =2018
1/a+1/b+1/c =1/2018
tính (a^2015+b^2015)(a^2017+b^2017)(a^2019+b^2019)
\(a;b;c\ne0\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2018}=\frac{1}{a+b+c}\)\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)
\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\Leftrightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{c\left(a+b+c\right)}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a+b=0\\ab=-c\left(a+b+c\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a+b=0\\ab+ac+bc+c^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b=0\\\left(a+c\right)\left(b+c\right)=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a+b=0\\a+c=0\\b+c=0\end{matrix}\right.\)
\(M=\left(a^{2015}+b^{2015}\right)\left(a^{2017}+b^{2017}\right)\left(a^{2019}+b^{2019}\right)\)
- Nếu \(a+b=0\Rightarrow M=0\)
- Nếu \(\left[{}\begin{matrix}a+c=0\\b+c=0\end{matrix}\right.\) thì ko tính được giá trị cụ thể của M
Khi đó \(\left[{}\begin{matrix}M=\left(2018^{2015}+b^{2015}\right)\left(2018^{2017}+b^{2017}\right)\left(2018^{2019}+b^{2019}\right)\\M=\left(2018^{2015}+a^{2015}\right)\left(2018^{2017}+a^{2017}\right)\left(2018^{2019}+a^{2019}\right)\end{matrix}\right.\)
cho a,b,c khác 0 thỏa mãn a^2017 b^2017 c^2017=1; a^2(b c) b^2(c a) c^2(a b) 2abc =0 tính 1/a^2017 1/b^2017 1/c^2017
Tính:
A=2019/2018 - 2018/2017 + 2017/2016 - 2016/2015
B=1/2019 - 1/2018 + 1/2017 - 1/2016
C=1/2017 - 1/2016 + 1/2015 - 1/2014
cho a,b,c \(\in\)R thỏa mãn a+b+c=2018 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2018}\)
tính M=\(\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)
\(\Leftrightarrow\frac{\left(ab+bc+ac\right).\left(a+b+c\right)-abc}{abc.\left(a+b+c\right)}=0\Leftrightarrow\left(ab+bc+ac\right).\left(a+b+c\right)-abc=0\)
\(\Leftrightarrow\left(a+b\right).\left(a+c\right).\left(c+b\right)=0\Leftrightarrow\orbr{\begin{cases}a=-b\\a=-c\end{cases}\text{hoac }c=-b}\)
thay vào rồi tính (nhớ đưa dấu âm lên tử nha) còn phần phan tích sẽ giải thích sau-bây h bận >:
\(\left(a+b+c\right).\left(ab+ac+bc\right)-abc=0\)
\(\Leftrightarrow a^2c+a^2b+abc+b^2a+b^2c+abc+c^2a+c^2b=0\)
\(\Leftrightarrow\left(abc+a^2c\right)+\left(abc+b^2c\right)+\left(a^2b+ab^2\right)+\left(c^2a+c^2b\right)=0\)
\(\Leftrightarrow ac.\left(a+b\right)+cb.\left(a+b\right)+ab.\left(a+b\right)+c^2.\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right).\left(ac+cb+ab+c^2\right)=0\)
\(\Leftrightarrow\left(a+b\right).\left[c\left(a+c\right)+b.\left(a+c\right)\right]=\left(a+b\right).\left(a+c\right).\left(c+b\right)=0\)
~~ cách này dài dòng >: but t ko nghĩ đc cách nào ngắn hưn =(
Cho a+b+c=0 và ab+ac+bc=0
Tính giá trị của P=(a-2017)^2018+(b-2017)^2018-(c+2017)^2018
Ta có: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)
\(\Rightarrow a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ac\right)\)
\(\Rightarrow a^2+b^2+c^2=0-2\cdot0\)
\(\Rightarrow a=b=c=0\)
Thế kết quả vào: \(\left(0-2017\right)^{2018}+\left(0-2017\right)^{2018}-\left(0+2017\right)^{2018}=2017^{2018}\)
Ps: \(\left(-2017\right)^{2018}=2017^{2018}\)
Cho a,b,c là các số thực dương thỏa mãn \(\dfrac{1}{1+a}+\dfrac{2017}{2017+b}+\dfrac{2018}{2018+c}\le1\). Tìm GTNN của \(P=abc\)
\(1-\dfrac{1}{1+a}\ge\dfrac{2017}{b+2017}+\dfrac{2018}{c+2018}\ge2\sqrt{\dfrac{2017.2018}{\left(b+2017\right)\left(c+2018\right)}}\)
\(1-\dfrac{2017}{b+2017}\ge\dfrac{1}{1+a}+\dfrac{2018}{b+2018}\ge2\sqrt{\dfrac{2018}{\left(1+a\right)\left(b+2018\right)}}\)
\(1-\dfrac{2018}{c+2018}\ge\dfrac{1}{1+a}+\dfrac{2017}{b+2017}\ge2\sqrt{\dfrac{2017}{\left(1+a\right)\left(b+2017\right)}}\)
Nhân vế:
\(\dfrac{abc}{\left(a+1\right)\left(b+2017\right)\left(c+2018\right)}\ge\dfrac{8.2017.2018}{\left(a+1\right)\left(b+2017\right)\left(c+2018\right)}\)
\(\Rightarrow abc\ge8.2017.2018\)
Cho a,b,c thỏa mãn\(\frac{2}{\left(x^2+1\right)\left(x-1\right)}=\frac{ax+b}{x^2+1}+\frac{c}{x-1}\) .
Tính M=\(\frac{a^{2017}+b^{2018}+c^{2918}}{a^{2017}b^{2018}c^{2019}}\)