Tìm x, y biết: \(x^2-x+y^2+y+\frac{1}{2}=0\)0
Giúp mình với, please!
tính giá trị của biểu thức
E= (1+x/2) * (1-y/x)*(1-z/y) biết x,y,z khác 0 và -x+y-z=0
giúp mình với đang cần gấp
Tìm x và y biết :
( x - 1 )2020 + / y - 3 / = 0
Giúp mình với mn ạ
Cảm ơn mn nhiều <3
Ta có: \(\left(x-1\right)^{2020}\ge0\forall x\)
\(\left|y-3\right|\ge0\forall y\)
Do đó: \(\left(x-1\right)^{2020}+\left|y-3\right|\ge0\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-1=0\\y-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)
Vậy: (x,y)=(1;3)
CÁC BẠN ƠI GIÚP MÌNH VỚI
1) TÍNH \(\frac{1}{X}-\frac{1}{Y}\)BIẾT X;Y \(\ne\)0 VÀ X-Y=XY
2) TÌM X;Y ;Z BIẾT ( X - \(\frac{1}{2}\)) * (Y + \(\frac{1}{3}\) ) * (Z - 2 ) = 0 VÀ X+2=Y+3=Z+4
BẠN NÀO BIẾT GIÚP MÌNH NHA MÌNH XIN CẢM ƠN NHẤT QUẢ ĐẤT LUÔN!!!
1) 1/x-1/y
=y/xy-x/xy
=y-x/xy
= - (x-y)/xy
= -1 (vì x-y=xy)
2)
(x- 1/2)*(y+1/3)*(z-2)=0
=> x-1/2 = 0 hoac y+1/3=0 hoac z-2=0
th1 :x-1/2=0 => x=1/2
x+2=y+3=z+4
mà x=1/2 => y= -1/2 ; z=-3/2
th2: y+1/3=0
th3 : z-2=0
(tự làm nha)
1) Với x,y khác 0, Ta có
\(\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}=-\left(\frac{x-y}{xy}\right)=-\left(\frac{xy}{xy}\right)=-1\)
Vậy \(\frac{1}{x}-\frac{1}{y}=-1\)
2) Ta có:
\(\left(x-\frac{1}{2}\right)\left(y+\frac{1}{3}\right)\left(z-2\right)=0\)
Trường hợp 1: x - 1/2 = 0 => x = 1/2 \(\Rightarrow\hept{\begin{cases}y=\frac{1}{2}+2-3=-\frac{1}{2}\\z=\frac{1}{2}+2-4=-\frac{3}{2}\end{cases}}\)
Trường hợp 2: y + 1/3 = 0 => y = -1/3 \(\Rightarrow\hept{\begin{cases}x=-\frac{1}{3}+3-2=\frac{2}{3}\\z=-\frac{1}{3}+3-4=-\frac{4}{3}\end{cases}}\)
Trường hợp 3: z - 2 = 0 => z = 2 \(\Rightarrow\hept{\begin{cases}x=2+4-2=4\\y=2+4-3=3\end{cases}}\)
Vậy......
CÁM ƠN NHỮNG NGƯỜI BẠN NHẤT QUẢ ĐẤT NÀY LUN
1. Cho a, b là các hằng số dương. Tìm min A=x+y biết x>0, y>0; \(\frac{a}{x}+\frac{b}{y}=1\)
2.Tìm \(a\in Z\), a#0 sao cho max và min của \(A=\frac{12x\left(x-a\right)}{x^2+36}\)cũng là số nguyên
3. Cho \(A=\frac{x^2+px+q}{x^2+1}\) . Tìm p, q để max A=9 và min A=-1
4. Tìm min \(P=\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+xz}\) với x,y,z>0 ; \(x^2+y^2+z^2\le3\)
5. Tìm min \(P=3x+2y+\frac{6}{x}+\frac{8}{y}\) với \(x+y\ge6\)
6. Tìm min, max \(P=x\sqrt{5-x}+\left(3-x\right)\sqrt{2+x}\) với \(0\le x\le3\)
7.Tìm min \(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\) với x>0, y>0; x+y=1
8.Tìm min, max \(P=x\left(x^2+y\right)+y\left(y^2+x\right)\) với x+y=2003
9. Tìm min, max P = x--y+2004 biết \(\frac{x^2}{9}+\frac{y^2}{16}=36\)
10. Tìm mã A=|x-y| biết \(x^2+4y^2=1\)
Tìm x,y biết:\(\left(x+\frac{1}{2}\right)^{100}+\left|7-\frac{1}{3}y\right|=0\)
Giúp mình với...
Ta có: \(\hept{\begin{cases}\left(x+\frac{1}{2}\right)^{100}\ge0;\forall x,y\\|7-\frac{1}{3}y|\ge0;\forall x,y\end{cases}}\)\(\Rightarrow\left(x+\frac{1}{2}\right)^{100}+|7-3y|\ge0;\forall x,y\)
Do đó \(\left(x+\frac{1}{2}\right)^{100}+|7-3y|=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+\frac{1}{2}\right)^{100}=0\\|7-\frac{1}{3}y|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+\frac{1}{2}=0\\7-\frac{1}{3}y=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{-1}{2}\\y=\frac{7}{3}\end{cases}}\)
Vậy ...
Nhầm nhé \(y=21\)
. a) Cho hàm số y = f(x) = -2x + 3. Tính f(-2) ;f(-1) ; f(0) ; f( 1 2 ); f( 1 2 ). b) Cho hàm số y = g(x) = x 2 – 1. Tính g(-1); g(0
giúp e với ạ
a: f(-2)=4+3=7
f(-1)=2+3=5
f(0)=3
f(1/2)=-1+3=2
f(-1/2)=1+3=4
b: g(-1)=1-1=0
f(0)=0-1=-1
Tìm X ,Y biết ; \(\frac{X+1}{2}=\frac{2.Y-7}{5}=\frac{X-2.Y+8}{X}=\frac{\left(2.Y-7\right)+\left(X-2.Y+8\right)}{5+X}.\) .;;; Các bạn giúp mình với .
Cho x,y>0 thỏa mãn (x+\(\sqrt{1+x^2}\))(y+\(\sqrt{1+y^2}\))=2018. Tìm GTNN của P=x+yGiúp mk với ạ, please
Đặt \(\left\{{}\begin{matrix}x+\sqrt{1+x^2}=a>0\\y+\sqrt{1+y^2}=b>0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}1+x^2=a^2+x^2-2ax\\1+y^2=b^2+y^2-2by\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{a^2-1}{2a}\\y=\dfrac{b^2-1}{2b}\end{matrix}\right.\)
Giả thiết trở thành: \(ab=2018\)
\(P=\dfrac{a^2-1}{2a}+\dfrac{b^2-1}{2b}=\dfrac{1}{2}\left(a+b\right)-\dfrac{a+b}{2ab}\)
\(P=\dfrac{1}{2}\left(a+b\right)\left(1-\dfrac{1}{ab}\right)=\dfrac{1}{2}\left(a+b\right).\dfrac{2017}{2018}\ge\sqrt{ab}.\dfrac{2017}{2018}=\dfrac{2017}{\sqrt{2018}}\)
\(P_{min}=\dfrac{2017}{\sqrt{2018}}\)
Dấu "=" xảy ra khi \(x=y=\dfrac{2017}{2\sqrt{2018}}\)
Tính giá trị của biểu thức khi biết mối quan hệ giữa các biến
a) A= x4 - x.y3 + x3.y - y4 - 1 biết x+y=0
b) \(B=\left(1-\frac{z}{y}\right).\left(1-\frac{x}{y}\right).\left(1+\frac{y}{x}\right)\) biết x - y - z =0
c) C= x2 .(x + y) -y2 .(x+y)+x2 -y2 +2(x+y)-3 biết x+y+1=0
d) D= (x+y).(y+z).(x+z) biết x.y.z=2 và x+y+z=0
Mình đang vội giúp mình với