\(\frac{1}{2}.\sqrt{100}-\sqrt{\frac{1}{16}+\left(\frac{1}{3}\right)^0}\)
a,\(\frac{-6}{21}.\frac{3}{2}\)
b,\(\left\{-3\right\}.\left\{\frac{-7}{12}\right\}\)
c,\(\left\{\frac{11}{12}:\frac{33}{16}\right\}.\frac{3}{5}\)
d,\(\sqrt{\left\{-7\right\}^2}+\sqrt{\frac{2}{16}}-\frac{3}{2}\)
e,\(\frac{1}{2}.\sqrt{100}-\sqrt{\frac{1}{16}}+\left\{\frac{1}{3}\right\}^0\)
a) \(\frac{-6}{21}.\frac{3}{2}=-\frac{3}{7}\) b) \(\left(-3\right).\left(\frac{-7}{12}\right)=\frac{21}{12}=\frac{7}{4}\)
c) \(\left(\frac{11}{12}:\frac{33}{16}\right).\frac{3}{5}=\frac{11}{12}.\frac{16}{33}.\frac{3}{5}=\frac{4}{15}\)
d) \(\sqrt{\left(-7\right)^2}+\sqrt{\frac{2}{16}}=7+\sqrt{\frac{1}{8}}\)
c) \(\frac{1}{2}.\sqrt{100}-\sqrt{\frac{1}{16}}+\left(\frac{1}{3}\right)^0=\frac{1}{2}.10-\frac{1}{4}+1=5\frac{3}{4}\)
TÍNH:
a)\(10.\sqrt{100}-\sqrt{\frac{1}{16}}+\left(\frac{1}{3}\right)^0\)
b)\(\left(\frac{1}{3}\right)^{50}.\left(-9\right)^{25}-\frac{2}{3}:4\)
n=ghi lộn nhé !!
a)\(10.\sqrt{0,01.\sqrt{ }\frac{16}{9}}+3\sqrt{49-\frac{1}{6}}\sqrt{4}\)
a, \(10.\sqrt{100}-\sqrt{\frac{1}{16}}+\left(\frac{1}{3}\right)^0\)
= 10 . 10 - \(\frac{1}{4}\) + 1
= 100 - \(\frac{1}{4}+1\)
= 99,75 + 1 = 100,75
b, \(\left(\frac{1}{3}\right)^{50}.\left(-9\right)^{25}-\frac{2}{3}:4\)
= \(\left(\frac{1}{9}\right)^{25}.\left(-9\right)^{25}-\frac{1}{6}\)
= \(\left(\frac{1}{9}.-9\right)^{25}-\frac{1}{6}\)
\(\left(-1\right)^{25}-\frac{1}{6}\)
= \(-1-\frac{1}{6}=\frac{-7}{6}\)
\(\sqrt{64}+3.\sqrt{ \left(\frac{1}{2}\right)^0}-\frac{\sqrt{16}}{4}+\left(\sqrt{\left(-4\right)^2}:\frac{1}{2}\right).8\)
\(\sqrt{64}+3.\sqrt{\left(\frac{1}{2}\right)^0}-\frac{\sqrt{16}}{4}+\left(\sqrt{\left(-4\right)^2:\frac{1}{2}}\right).8\)
= \(8+3.1-\frac{4}{4}+\left(\sqrt{16:\frac{1}{2}}\right).8\)
=\(8+3-1+\left(\sqrt{16.2}\right).8\)
=\(8+3-1+\left(\sqrt{32}\right).8\)
=\(11-1+\left(\sqrt{32}\right).8\)
= \(10+5,65685424949.8\)
= \(10+45,2548339959\)
=\(55,2548339959\)
Mình ko biết là có đúng không í
vì mình thấy đề bài có gì sai ý!!!
\(\sqrt{64}+3\sqrt{\left(\frac{1}{2}\right)^0}-\frac{\sqrt{16}}{4}+\left(\sqrt{\left(-4\right)^2}:\frac{1}{2}\right).8\)
\(=\sqrt{8^2}+3\sqrt{1}-\frac{\sqrt{4^2}}{4}+\left(\sqrt{16}:\frac{1}{2}\right).8\)
\(=8+3-\frac{4}{4}+\left(\sqrt{4^2}:\frac{1}{2}\right).8\)
\(=11-1+\left(4.2\right).8\)
\(=10+8.8=10+64=74\)
cái này bấm máy tính casio hoặc deli.... là ra ngay hoi !!!
\(\sqrt{8}+3.\sqrt{\left(\frac{1}{2}\right)^0}-\frac{\sqrt{16}}{4}+\left(\sqrt{\left(-4\right)^2}:\frac{1}{2}\right).8\)
\(=8+3-\frac{4}{4}+\left(4:\frac{1}{2}\right).8\)
\(=10+8.8\)
\(=74\)
a)
\(\frac{3}{7}+\left(-\frac{5}{2}\right)+\left(-\frac{3}{5}\right)\)
b)
\(\frac{4}{5}-\left(-\frac{2}{7}\right)-\frac{7}{10}\)
c)
\(3,5-\left(-\frac{2}{7}\right)\)
d)
\(\sqrt{\left(-7\right)^2}+\sqrt{\frac{25}{16}}-\frac{3}{2}\)
e)
\(\sqrt{0,36}.\sqrt{\frac{25}{16}}+\frac{1}{4}\)
f)
\(\frac{1}{2}.\sqrt{100}-\sqrt{\frac{1}{16}}+\left(\frac{1}{3}\right)^0\)
g)
\(\sqrt{\frac{4}{81}}:\sqrt{\frac{25}{81}}-1\frac{2}{5}\)
i)
\(\frac{21^9.2^{10}}{14^9.3^8}\)
k)
\(\frac{10^{11}.21^{12}}{15^{10}.14^{11}}\)
l)
\(0,5.\sqrt{100}-\sqrt{\frac{1}{4}}\)
a, \(-\frac{187}{70}\)
b,\(\frac{27}{70}\)
c,\(\frac{53}{14}\)
d,\(\frac{27}{4}\)
e,1
f,\(\frac{23}{4}\)
g,-1
i,6
k,315
l,\(\frac{9}{2}\)
TÍNH:
a)\(\frac{2^4.2^6}{\left(2^5\right)^2}-\frac{2^5.15^3}{6^3.10^2}\)
b)\(\frac{1}{2}.\sqrt{100}-\sqrt{\frac{1}{16}}+\left(\frac{1}{3}\right)^0\)
Rút gọn biểu thức
1) \(\frac{\sqrt{5+2\sqrt{6}}+\sqrt{8+2\sqrt{15}}}{\sqrt{7+2\sqrt{10}}}\)
2) \(\left(2+\frac{3+\sqrt{3}}{\sqrt{3}+1}\right)\left(2+\frac{3-\sqrt{3}}{\sqrt{3}-1}\right):\left(\sqrt{5}-2\right)\)
3) \(\left(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\right).\left(\sqrt{6}+11\right)\)
4) \(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}\)
5) \(\frac{1}{1-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-...-\frac{1}{\sqrt{98}-\sqrt{99}}+\frac{1}{\sqrt{99}-\sqrt{100}}\)
6) \(\frac{1}{2+\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{100\sqrt{99}+99\sqrt{100}}\)
7)\(\left(\sqrt{\frac{2}{3}}+\sqrt{\frac{3}{2}}+2\right)\left(\frac{\sqrt{2}+\sqrt{3}}{4\sqrt{2}}-\frac{\sqrt{3}}{\sqrt{2}+\sqrt{3}}\right)\left(24+8\sqrt{6}\right)\left(\frac{\sqrt{2}}{\sqrt{2}+\sqrt{3}}+\frac{\sqrt{3}}{\sqrt{2}-\sqrt{3}}\right)\)
Câu 1,2,3 Ez quá rồi :3
Câu 4:
Tổng quát:
\(\frac{1}{\sqrt{a}+\sqrt{a+1}}=\frac{\sqrt{a}-\sqrt{a+1}}{a-a-1}=\sqrt{a+1}-\sqrt{a}.\) Game là dễ :v
Câu 5 ko khác câu 4 lắm :v
Câu 5:
Tổng quát:
\(\frac{1}{\sqrt{a}-\sqrt{a+1}}=\frac{\sqrt{a}+\sqrt{a+1}}{a-a-1}=-\sqrt{a}-\sqrt{a+1}.\) Game là dễ :v
Sao làm hổng ai bảo đú.n/g vậy :(((
giải phương trình
a) \(\left(x+\frac{5-x}{\sqrt{x}+1}\right)^2+\frac{16\sqrt{x}\left(5-x\right)}{\sqrt{x}+1}-16\)\(=0\)
b) \(\sqrt{2x-\frac{3}{x}}+\sqrt{\frac{6}{x}-2x}=1+\frac{3}{2x}\)
c) \(\sqrt{2x+1}+\frac{2x-1}{x+3}-\left(2x-1\right)\sqrt{x^2+4}-\sqrt{2}=0\)
d) \(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)
Tính:
\(A=\frac{\frac{\sqrt{2+\sqrt{3}}}{2}}{\frac{\sqrt{2+\sqrt{3}}}{2}-\frac{2}{\sqrt{16}}+\frac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}}\)\(B=\frac{2\left(\frac{\sqrt{2}+\sqrt{3}}{6\sqrt{2}}\right)^{-1}+3\left(\frac{\sqrt{2}+\sqrt{3}}{4\sqrt{3}}\right)^{-1}}{\left(\frac{2+\sqrt{16}}{12}\right)^{-1}+\left(\frac{3+\sqrt{6}}{12}\right)^{-1}}\)P/s: Đề phức tạp vlin nên thớt giải k nổi :)) Pro nào giúp em dí ~
So sánh:
a)\(A=\sqrt[]{21}+\sqrt{42}+\sqrt{63}\)
\(B=\sqrt{1}+\sqrt{2}+\sqrt{3}+\sqrt{20}+\sqrt{40}+\sqrt{60}\)
b)\(A=\left(1-\frac{1}{\sqrt{4}}\right)\left(1-\frac{1}{\sqrt{16}}\right)\left(1-\frac{1}{\sqrt{100}}\right)\)
\(B=\sqrt{0,1}\)
c) \(A=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}\)
\(B=10\)