\(\frac{2\left(3x+5\right)}{3}-\frac{x}{2}=5-\frac{3\left(x+1\right)}{4}\)
Giải phương trình
Giải phương trình :
\(\left(\frac{8}{3}\right)^{x^2-x+1}\left(\frac{3}{5}\right)^{2x^2-3x+2}\left(\frac{5}{7}\right)^{3x^2-4x+3}\left(\frac{7}{2}\right)^{4x^2-5x+4}=210^{\left(x-1\right)^2}\)
\(\Leftrightarrow\frac{2^{3x^2-3x+1}}{3^{x^2-x+1}}.\frac{3^{2x^2-3x+2}}{5^{2x^2-3x+2}}.\frac{5^{3x^2-4x+3}}{7^{3x^2-4x+3}}.\frac{7^{4x^2-5x+4}}{2^{4x^2-5x+4}}=210^{\left(x-1\right)^2}\)
\(\Leftrightarrow\frac{\left(3.5.7\right)^{x^2-x+1}}{2^{x^2-2x+1}}=2^{\left(x-1\right)^2}.\left(3.5.7\right)^{\left(x-1\right)^2}\)
\(\Leftrightarrow105^x=2^{2\left(x-1\right)^2}\)
Lấy Logarit cơ số 2 hai vế, ta được :
\(2\left(x-1\right)^2=\left(\log_2105\right)x\)
\(\Leftrightarrow2x^2-\left(4+\log_2105\right)x+2=0\)
\(\Leftrightarrow x=\frac{\left(2+\log_2105\right)\pm\sqrt{\log^2_2105+8\log_2105}}{4}\)
Vậy phương trình đã cho có 2 nghiệm
Giải phương trình:
\(\frac{\left(x-1\right)^4}{\left(x^2-3\right)^2}+\left(x^2-3\right)^4+\frac{1}{\left(x-1\right)^2}=3x^2-2x-5\)
ĐẠI SỐ
1. Giải các phương trình sau :
a) \(\frac{25x-655}{95}-\frac{5\left(x-12\right)}{209}=\frac{89-3x-\frac{2\left(x-18\right)}{5}}{11}\)
b) \(\frac{8\left(x+22\right)}{45}-\frac{7x+149+\frac{6\left(x+12\right)}{5}}{9}=\frac{x+35+\frac{2\left(x+50\right)}{9}}{5}\)
c) \(\frac{x+\frac{2\left(3-x\right)}{5}}{14}-\frac{5x-4\left(x-1\right)}{24}=\frac{7x+2+\frac{9-3x}{5}}{12}+\frac{2}{3}\)
2. Giải các bất phương trình sau :
a) \(5+\frac{x+4}{5}< x-\frac{x-2}{2}+\frac{x+3}{3}\)
b) \(x+1-\frac{x-1}{3}< \frac{2x+3}{2}+\frac{x}{3}+5\)
c) \(\frac{\left(3x-2\right)^2}{3}-\frac{\left(2x+1\right)^2}{3}\le x\left(x+1\right)\)
d) \(\frac{2x+3}{4}-\frac{x+1}{3}\ge\frac{1}{2}-\frac{3-x}{5}\)
\(\frac{25x-655}{95}-\frac{5\left(x-12\right)}{209}=\frac{89-3x-\frac{2\left(x-18\right)}{5}}{11}\)
\(< =>\frac{5x-131}{19}=\frac{1631-52x-\frac{38x-684}{5}}{209}\)
\(< =>\left(5x-131\right)209=\left(1631-52x-\frac{38x-684}{5}\right)19\)
\(< =>55x-1441=1631-52x-\frac{38x-684}{5}\)
\(< =>3072-107x=\frac{38x-684}{5}\)
\(< =>\left(3072-107x\right)5=38x-684\)
\(< =>15360-535x-38x-684=0\)
\(< =>14676=573x< =>x=\frac{14676}{573}=\frac{4892}{191}\)
nghệm xấu thế
\(\frac{8\left(x+22\right)}{45}-\frac{7x+149+\frac{6\left(x+12\right)}{5}}{9}=\frac{x+35+\frac{2\left(x+50\right)}{9}}{5}\)
\(< =>\frac{8x+176}{45}-\frac{41x+817}{45}=\frac{11x+415}{45}\)
\(< =>993-33x-11x-415=0\)
\(< =>578=44x< =>x=\frac{289}{22}\)
Bài 1:
b) Phương trình đã cho tương đương với phương trình:
\(\frac{8\left(x+22\right)-55\left(7x+149\right)-6\left(x+12\right)}{45}=\frac{9\left(x+35\right)+2\left(x+50\right)}{45}\)
\(\Leftrightarrow44x=-1056\)
\(\Leftrightarrow x=-24\)
Vậy x=-24 là nghiệm của phương trình
c) Phương trình đã cho tương đương với phương trình:
\(\frac{3x+6}{70}-\frac{x+4}{24}=\frac{32x+19}{60}+\frac{2}{3}\)
\(\Leftrightarrow12\left(3x+6\right)-35\left(x+4\right)=14\left(32x+19\right)+560\)
\(\Leftrightarrow-447x=894\)
\(\Leftrightarrow x=-2\)
Vậy x=-2 là nghiệm của phương trình
Giải các phương trình sau :
\(a,6x^2-5x+3=2x-3x\left(3-2x\right)\)
\(b,\frac{2\left(x-4\right)}{4}-\frac{3+2x}{10}=x+\frac{1-x}{5}\)
\(c,\frac{2x}{3}+\frac{3x-5}{4}=\frac{3\left(2x-1\right)}{2}-\frac{7}{6}\)
\(d,\frac{6x+5}{2}-\frac{10x+3}{4}=2x+\frac{2x+1}{2}\)
\(e,\left(x-4\right)\left(x+4\right)-2\left(3x-2\right)=\left(x-4\right)^2\)
a) <=> \(6x^2-5x+3-2x+3x\left(3-2x\right)=0\)
<=> \(6x^2-5x+3-2x+9x-6x^2=0\)
<=> \(2x+3=0\)
<=> \(x=\frac{-3}{2}\)
b) <=> \(10\left(x-4\right)-2\left(3+2x\right)=20x+4\left(1-x\right)\)
<=> \(10x-40-6-4x=20x+4-4x\)
<=> \(6x-46-16x-4=0\)
<=> \(-10x-50=0\)
<=> \(-10\left(x+5\right)=0\)
<=> \(x+5=0\)
<=> \(x=-5\)
c) <=> \(8x+3\left(3x-5\right)=18\left(2x-1\right)-14\)
<=> \(8x+9x-15=36x-18-14\)
<=> \(8x+9x-36x=+15-18-14\)
<=> \(-19x=-14\)
<=> \(x=\frac{14}{19}\)
d) <=>\(2\left(6x+5\right)-10x-3=8x+2\left(2x+1\right)\)
<=> \(12x+10-10x-3=8x+4x+2\)
<=> \(2x-7=12x+2\)
<=> \(2x-12x=7+2\)
<=> \(-10x=9\)
<=> \(x=\frac{-9}{10}\)
e) <=> \(x^2-16-6x+4=\left(x-4\right)^2\)
<=> \(x^2-6x-12-\left(x-4^2\right)=0\)
<=> \(x^2-6x-12-\left(x^2-8x+16\right)=0\)
<=> \(x^2-6x-12-x^2+8x-16=0\)
<=> \(2x-28=0\)
<=> \(2\left(x-14\right)=0\)
<=> x-14=0
<=> x=14
Luffy , cậu sai câu c nhé , kia là -17 ạ => x=17/19
Giải phương trình sau : \(\frac{\left(x-1\right)^2}{\left(x^2-3\right)^2}+\left(x^2-3\right)^4+\frac{1}{\left(x-1\right)^2}=3x^2-2x-5\)
Giải phương trình
2.
a. \(\frac{\left(x-2\right)^2}{3}-\frac{\left(2x-3\right).\left(2x+3\right)}{8}+\frac{\left(x-4\right)^2}{6}=0\)
c. \(x+\frac{2x+\frac{x-1}{5}}{3}=1-\frac{3x-\frac{4-2x}{3}}{5}\)
a, \(\frac{\left(x-2\right)^2}{3}-\frac{\left(2x-3\right).\left(2x+3\right)}{8}+\frac{\left(x-4\right)^2}{6}=0\)
\(\Leftrightarrow\frac{x^2-4x+4}{3}+\frac{9-4x^2}{8}+\frac{x^2-8x+16}{6}=0\)
\(\Leftrightarrow\frac{8\left(x^2-4x+4\right)+3\left(9-4x^2\right)+4\left(x^2-8x+16\right)}{24}=0\)
\(\Leftrightarrow\frac{8x^2-32x+32+27-12x^2+4x^2-32x+64}{24}=0\)
\(\Leftrightarrow\frac{123-64x}{24}=0\Leftrightarrow123-64x=0\Leftrightarrow x=\frac{123}{64}\)
GIẢI PHƯƠNG TRÌNH SAU
A) \(\frac{X^2+2X+1}{X^2+2X+2}+\frac{X^2+2X+2}{X^2+2X+3}=\frac{7}{6}\)
B) \(\frac{\left(X^2-3X-4\right)^4}{\left(X-3\right)^5\left(X+2\right)^3}+\frac{\left(X^2+4X+3\right)^6}{\left(X-3\right)^3\left(X+2\right)^5}=0\)
Giải các phương trình:
\(a.\left(x^2+1\right)\left(x^2-4x+4\right)=0\)
\(b.\left(3x-2\right)\left(\frac{2\left(x+3\right)}{7}-\frac{4x-3}{5}\right)=0\)
\(c.\left(3,3-11x\right)\left(\frac{7x+2}{5}+\frac{2\left(1-3x\right)}{3}\right)=0\)
a)\(\left(x^2+1\right)\left(x^2-4x+4\right)=0\Leftrightarrow\orbr{\begin{cases}x^2+1=0\\x^2-4x+4=0\end{cases}\Rightarrow\orbr{\begin{cases}x^2=-1\left(vn\right)\\\left(x-2\right)^2=0\end{cases}\Rightarrow}x=2}\)
b)\(\left(3x-2\right)\left(\frac{2x+6}{7}-\frac{4x-3}{5}\right)=0\\ \Rightarrow\left(3x-2\right)\left(\frac{10x+30-28x+21}{35}\right)=0\)
\(\Rightarrow\left(3x-2\right)\left(\frac{-18x+51}{35}\right)=0\Rightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{17}{6}\end{cases}}\)
c)\(\left(3,3-11x\right)\left(\frac{21x+6+10-30x}{15}\right)=0\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{10}\\x=\frac{16}{9}\end{cases}}\)
giải phương trình sau
a) 0,75x ( x + 5 ) = ( x + 5 ) ( 3 - 1,25x )
b) \(\frac{4}{5}\)- 3 = \(\frac{1}{5}\)x ( 4x - 15 )
c) ( x - 3 ) - \(\frac{\left(x-3\right)\left(2x-5\right)}{6}\)= \(\frac{\left(x-3\right)\left(3-x\right)}{4}\)
d) \(\frac{\left(3x+1\right)\left(3x-2\right)}{3}\)+ 5( 3x + 1 ) = \(\frac{2\left(2x+1\right)\left(3x+1\right)}{3}\)+2x ( 3x +1 )
a) 0,75x(x + 5) = (x + 5)(3 - 1,25x)
<=> 0,75x(x + 5) - (x + 5)(3 - 1,25x) = (x + 5)(3 - 1,25x) - (x + 5)(3 - 1,25x)
<=> 0,75x(x + 5) - (x + 5)(3 - 1,25x) = 0
<=> (x + 5)(0,75 + 1,25x - 3) = 0
<=> (x + 5)(2x - 3) = 0
<=> x + 5 = 0 hoặc 2x - 3 = 0
<=> x = -5 hoặc x = 3/2
b) 4/5 - 3 = 1/5x(4x - 15)
<=> -11/5 = x(4x - 15)/5
<=> -11 = x(4x - 15)
<=> -11 = 4x2 - 15x
<=> 11 + 4x2 - 15x = 0
<=> 4x2 - 4x - 11x + 11 = 0
<=> 4x(x - 1) - 11(x - 1) = 0
<=> (4x - 11)(x - 1) = 0
<=> 4x - 11 = 0 hoặc x - 1 = 0
<=> x = 11/4 hoặc x = 1
c) \(\left(x-3\right)-\frac{\left(x-3\right)\left(2x-5\right)}{6}=\frac{\left(x-3\right)\left(3-x\right)}{4}\)
<=> 12x - 36 - 2(x - 3)(2x - 5) = 3(x - 3)(3 - x)
<=> 12x - 36 - 4x2 + 10x + 12x - 30 = 9x - 3x2 - 27 + 9x
<=> 34x - 66 - 4x2 = 18x - 3x2 - 27
<=> 34x - 66 - 4x2 - 18x + 3x2 + 27 = 0
<=> 16x - 39x - x2 = 0
<=> x2 - 16x + 39x = 0
<=> (x - 3)(x - 13) = 0
<=> x - 3 = 0 hoặc x - 13 = 0
<=> x = 3 hoặc x = 13
d) \(\frac{\left(3x+1\right)\left(3x-2\right)}{3}+5\left(3x+1\right)=\frac{2\left(2x+1\right)\left(3x+1\right)}{3}+2x\left(3x+1\right)\)
<=> (3x + 1)(3x - 2) + 15(3x + 1) = 2(2x + 1)(3x + 1) + 6x(3x + 1)
<=> 9x2 - 6x + 3x - 2 + 45x + 15 = 12x3 + 4x + 6x + 2 + 18x2 + 6x
<=> 9x2 + 42x + 13 = 30x2 + 16x + 2
<=> 9x2 + 42x + 13 - 30x2 - 16x - 2 = 0
<=> -21x2 + 26x + 11 = 0
<=> 21x2 - 26x - 11 = 0
<=> 21x2 + 7x - 33x - 11 = 0
<=> 7x(3x + 1) - 11(3x + 1) = 0
<=> (7x - 11)(3x + 1) = 0
<=> 7x - 11 = 0 hoặc 3x + 1 = 0
<=> x = 11/7 hoặc x = -1/3