Những câu hỏi liên quan
tôn thiện trường
Xem chi tiết
Vũ Bùi Nhật Linh
Xem chi tiết
Nguyễn Thiều Công Thành
Xem chi tiết
Thắng Nguyễn
10 tháng 9 2017 lúc 0:47

Sang học 24 tìm ai tên Perfect Blue nhé t làm bên đó rồi đưa link thì lỗi ==" , tìm tên đăng nhập  springtime ấy

Hoàng Ninh
10 tháng 9 2017 lúc 6:14

Chào bác Thắng

Lê Văn Hoàng
Xem chi tiết
GG boylee
Xem chi tiết
Quyết Tâm Chiến Thắng
Xem chi tiết
Lê Hồ Trọng Tín
7 tháng 9 2019 lúc 20:48

Mình dùng ''AM-GM ngược dấu'' như sau

Áp dụng bất đẳng thức AM-GM ta có \(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)

Tương tự với các phân thức khác rồi cộng vế theo vế ta được:

\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge a+b+c-\left(\frac{ab}{2}+\frac{bc}{2}+\frac{ca}{2}\right)=3-\left(\frac{ab}{2}+\frac{bc}{2}+\frac{ca}{2}\right)\)

Mặt khác áp dụng bất đẳng thức AM-GM  \(9=\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge3\left(ab+bc+ca\right)\)

\(\Rightarrow ab+bc+ca\le\frac{3}{2}\)

Vậy \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge3-\frac{3}{2}=\frac{3}{2}\)

Quyết Tâm Chiến Thắng
7 tháng 9 2019 lúc 21:34

bạn ơi đoạn cuối áp dụng BĐT AM-GN  mk chưa hiểu lắm

Lê Hồ Trọng Tín
8 tháng 9 2019 lúc 7:00

À mình dùng như thế này nhá \(a^2+b^2+c^2\ge ab+bc+ca\left(1\right)\)

Bạn có thể chứng minh bằng tách đối xứng như sau

\(VT\left(1\right)=\left(\frac{a^2}{2}+\frac{b^2}{2}\right)+\left(\frac{b^2}{2}+\frac{c^2}{2}\right)+\left(\frac{c^2}{2}+\frac{a^2}{2}\right)\ge2\sqrt{\frac{a^2b^2}{4}}+2\sqrt{\frac{b^2c^2}{4}}+2\sqrt{\frac{c^2a^2}{4}}\)

\(=ab+bc+ca\)

Còn cách khác thì chứng minh tương đương

Bất đẳng thức(1) tương đương với \(\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\)

Bất đẳng thức này hiển nhiên đúng nên suy ra (1) đúng

phạm thanh duy
Xem chi tiết
Trần Thanh Phương
1 tháng 6 2019 lúc 8:21

Áp dụng bđt AM-GM :

\(\frac{1}{a^2+1}+\frac{a^2+1}{4}\ge2\sqrt{\frac{a^2+1}{\left(a^2+1\right)\cdot4}}=1\)

Tương tự ta có : 

\(\frac{1}{b^2+1}+\frac{b^2+1}{4}\ge1\)

\(\frac{1}{c^2+1}+\frac{c^2+1}{4}\ge1\)

Cộng từng vế ta có :

\(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}+\frac{a^2+b^2+c^2+3}{4}\ge3\)

Áp dụng bđt quen thuộc : \(a^2+b^2+c^2\ge ab+bc+ac=3\)

Khi đó : \(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\ge3-\frac{3+3}{4}=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

Trần Phúc Khang
1 tháng 6 2019 lúc 13:12

bạn làm sai rồi . Khi \(a^2+b^2+c^2\ge3\) bạn chuyển vế thì nó không cùng dấu với bất đẳng thức

Thanh Tùng DZ
1 tháng 6 2019 lúc 16:32

cách này được ko. ( có tham khảo )

Không mất tính tổng quát, giả sử c = min ( a,b,c ).

Khi đó : ab + bc + ac = 3 \(\Rightarrow\)ab \(\ge\)1

CM với a,b > 0 và ab \(\ge\)1 thì \(\frac{1}{a^2+1}+\frac{1}{b^2+1}\ge\frac{2}{ab+1}\) ( tự c/m )

Ta có : \(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\ge\frac{2}{ab+1}+\frac{1}{c^2+1}\)

ta cần c/m \(\frac{2}{ab+1}+\frac{1}{c^2+1}\ge\frac{3}{2}\)

\(\Leftrightarrow\frac{2c^2+ab+3}{abc^2+ab+c^2+1}\ge\frac{3}{2}\)

\(\Leftrightarrow c^2+3\ge3abc^2+ab\)\(\Leftrightarrow c^2+bc+ac\ge3abc^2\)

\(\Leftrightarrow a+b+c\ge3abc\)

BĐT trên đúng vì theo AM-GM ta có : \(a+b+c\ge\sqrt{3\left(ab+bc+ac\right)}=3\)

và \(3=ab+bc+ac\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow3abc\le3\)

do đó ta có đpcm

Dấu  "= " xảy ra \(\Leftrightarrow\)a = b = c = 1

Đặng Công Minh Nghĩa
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 3 2022 lúc 16:24

\(\dfrac{a^2}{b+1}+\dfrac{b^2}{c+1}+\dfrac{c^2}{a+1}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+3}=\dfrac{9^2}{9+3}=\dfrac{27}{4}\)

Dấu "=" xảy ra khi \(a=b=c=3\)

Lê Song Phương
30 tháng 3 2022 lúc 7:32

Chứng minh BĐT \(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\) với \(\left(a,b,c>0\right)\)

Trước hết ta cm \(\frac{x^2}{a}+\frac{y^2}{b}\ge\frac{\left(x+y\right)^2}{a+b}\)\(\Leftrightarrow\frac{x^2b+y^2a}{ab}\ge\frac{x^2+y^2+2xy}{a+b}\)\(\Leftrightarrow\left(x^2b+y^2a\right)\left(a+b\right)\ge ab\left(x^2+y^2+2xy\right)\)(vì tất cả các tử số và mẫu số đều dương)

\(\Leftrightarrow x^2ab+y^2ab+x^2b^2+y^2a^2\ge abx^2+aby^2+2abxy\)\(\Leftrightarrow x^2b^2-2abxy+y^2a^2\ge0\)\(\Leftrightarrow\left(xb-ya\right)^2\ge0\)(luôn đúng)

Vậy BĐT được cm 

Để có đpcm thì ta chỉ cần áp dụng 2 lần BĐT ta vừa chứng minh xong:

\(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y\right)^2}{a+b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\)

Khách vãng lai đã xóa
Đỗ Đức Hải
29 tháng 3 2022 lúc 16:21

Nma mik lớp 4

Khách vãng lai đã xóa
Cris devil gamer
Xem chi tiết