Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Không tên
Xem chi tiết
kagamine rin len
22 tháng 12 2015 lúc 15:39

M=a/ab+a+1 +b/bc+b+1 +c/ca+c+1

=ac/abc+ca+c +abc/abc^2+abc+ac +c/ca+c+1

=ac/1+ca+c +1/c+1+ac +c/ca+c+1

=ac+1+c/1+ca+c

=1

Xem chi tiết
Trương Thanh Nhân
30 tháng 3 2020 lúc 9:17

M=1 khi và chỉ khi abc=1

Khách vãng lai đã xóa
Minh Nguyen
30 tháng 3 2020 lúc 10:23

Áp dụng giả thiết từ đề bài :

\(M=\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)

\(\Leftrightarrow M=\frac{a}{ab+a+abc}+\frac{b}{bc+b+1}+\frac{bc}{abc+bc+b}\)

\(\Leftrightarrow M=\frac{1}{b+1+bc}+\frac{b}{bc+b+1}+\frac{bc}{1+bc+b}\)

\(\Leftrightarrow M=\frac{1+b+bc}{b+1+bc}=1\)

Vậy M = 1

Khách vãng lai đã xóa
✰๖ۣۜŠɦαɗøω✰
30 tháng 3 2020 lúc 11:01

Ta có : \(M=\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\)

                  \(=\frac{1}{ab+a+1}+\frac{1}{\frac{1}{a}+b+1}+\frac{1}{c+ca+a.b.c}\)

                  \(=\frac{1}{ab+a+1}+\frac{a}{ab+a+1}+\frac{1}{c.\left(ab+a+1\right)}\)

                   \(=\frac{1}{ab+a+1}+\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}\)

                    \(=\frac{a+ab+1}{a+ab+1}=1\)

Vậy M = 1

Khách vãng lai đã xóa
Chờ thị trấn
Xem chi tiết
Nameless
Xem chi tiết
Conan thời hiện đại
Xem chi tiết
Nguyễn Khắc Quang
Xem chi tiết
Phạm Thành Đông
21 tháng 3 2021 lúc 10:48

Dễ dàng chứng minh được: 

\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)với \(x,y>0\)(1)

Dấu bằng xảy ra \(\Leftrightarrow x=y>0\)

Ta có:

\(\frac{a}{bc\left(a+1\right)}=\frac{a}{abc+bc}=\frac{a}{ab+bc+ca+bc}=\frac{a}{\left(ab+bc\right)+\left(bc+ca\right)}\)

Áp dụng (1), ta được:

\(\frac{1}{ab+bc}+\frac{1}{bc+ca}\ge\frac{4}{\left(ab+bc\right)+\left(bc+ca\right)}\)

\(\Leftrightarrow\frac{1}{4\left(ab+bc\right)}+\frac{1}{4\left(bc+ca\right)}\ge\frac{1}{ab+bc+bc+ca}\)

\(\Leftrightarrow\frac{a}{4}\left(\frac{1}{ab+bc}+\frac{1}{bc+ca}\right)\ge\frac{a}{ab+bc+bc+ca}\)

\(\Leftrightarrow\frac{a}{4}\left(\frac{1}{ab+bc}+\frac{1}{bc+ca}\right)\ge\frac{a}{bc\left(a+1\right)}\left(2\right)\)

Dấu bằng xảy ra \(\Leftrightarrow b=c>0\)

Chúng minh tương tự, ta được:

\(\frac{b}{4}\left(\frac{1}{ab+ca}+\frac{1}{bc+ca}\right)\ge\frac{b}{ca\left(b+1\right)}\left(3\right)\)

Dấu bằng xảu ra \(\Leftrightarrow a=c>0\).

\(\frac{c}{4}\left(\frac{1}{ac+ab}+\frac{1}{ab+bc}\right)\ge\frac{c}{ab\left(c+1\right)}\left(4\right)\)

Từ (2), (3) và (4), ta được:

\(\frac{a}{bc\left(a+1\right)}+\frac{b}{ca\left(b+1\right)}+\frac{c}{ab\left(c+1\right)}\le\)\(\frac{a}{4}\left(\frac{1}{ab+bc}+\frac{1}{bc+ac}\right)+\frac{b}{4}\left(\frac{1}{ac+bc}+\frac{1}{ac+ab}\right)\)\(+\frac{c}{4}\left(\frac{1}{ab+bc}+\frac{1}{ab+ac}\right)\)

\(\Leftrightarrow P\le\frac{1}{4}.\left(\frac{a}{ab+bc}+\frac{c}{ab+bc}\right)+\frac{1}{4}\left(\frac{a}{bc+ac}+\frac{b}{bc+ac}\right)\)\(+\frac{1}{4}\left(\frac{b}{ab+ac}+\frac{c}{ab+ac}\right)\)

\(\Leftrightarrow P\le\frac{a+c}{4\left(ab+bc\right)}+\frac{a+b}{4\left(bc+ac\right)}+\frac{b+c}{4\left(ab+ac\right)}\)

\(\Leftrightarrow P\le\frac{a+c}{4b\left(a+c\right)}+\frac{a+b}{4c\left(a+b\right)}+\frac{b+c}{4a\left(b+c\right)}\)

\(\Leftrightarrow P\le\frac{1}{4b}+\frac{1}{4c}+\frac{1}{4a}\)

\(\Leftrightarrow P\le\frac{1}{4}\left(\frac{ab+bc+ca}{abc}\right)\)

\(\Leftrightarrow P\le\frac{1}{4}.\frac{abc}{abc}=\frac{1}{4}.1=\frac{1}{4}\)( vì \(ab+bc+ca=abc\))

Dấu bằng xảy ra

\(\Leftrightarrow\hept{\begin{cases}a=b=c>0\\ab+bc+ca=abc\end{cases}}\Leftrightarrow a=b=c=3\)

Vậy \(minP=\frac{1}{4}\Leftrightarrow a=b=c=3\)

Khách vãng lai đã xóa
Ngân Hoàng Xuân
Xem chi tiết
TS Minh Quan
Xem chi tiết
Nhật Vy Nguyễn
Xem chi tiết