cho x,y thỏa mãn x+2y>=5
tìm GTNN 2x+3y+1/x+4/y
1. Cho x,y thỏa mãn: x2 + 5y2 - 4xy + 2y = 3. Tìm x,y sao cho x đạt GTLN
2. Cho x,y thỏa mãn: 3x2 + y2 + 2xy + 4 = 7x + 3y
a) Tìm GTNN, GTLN của biểu thức P = x + y
b) Tìm GTNN, GTLN của x
3. Cho x,y thỏa mãn: x2 + 2y2 + 2xy + 7x + 7y + 10 = 0. Tìm GTLN, GTNN của S = x + y
cho 2 số thực x , y thỏa mãn 2x + 3y = 1 . Tìm GTNN của S = 3x^2 + 2y^2
\(2x+3y=1\Rightarrow x=\frac{1-3y}{2}\)
Ta có \(S=3x^2+2y^2=3.\left(\frac{1-3y}{2}\right)^2+2y^2=\frac{35y^2-18y+3}{4}\)
\(=\frac{35\left(y^2-2.y.\frac{9}{35}+\frac{81}{1225}\right)+\frac{24}{35}}{4}=\frac{35}{4}\left(y-\frac{9}{35}\right)^2+\frac{6}{35}\)
Ta có \(35\left(y-\frac{9}{35}\right)^2\ge0\forall x\Rightarrow35\left(y-\frac{9}{35}\right)^2+\frac{6}{35}\ge\frac{6}{35}\forall x\Rightarrow S\ge\frac{6}{35}\)
Vậy \(MinS=\frac{6}{35}\)khi \(y=\frac{9}{35}\)
1. Cho x,y thỏa mãn: x2 + 5y2 - 4xy + 2y = 3. Tìm x,y sao cho x đạt GTLN
2. Cho x,y thỏa mãn: 3x2 + y2 + 2xy + 4 = 7x + 3y
a) Tìm GTNN, GTLN của biểu thức P = x + y
b) Tìm GTNN, GTLN của x
3. Cho x,y thỏa mãn: x2 + 2y2 + 2xy + 7x + 7y + 10 = 0. Tìm GTLN, GTNN của S = x + y
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
Cho cặp số (\(x;y\)) thỏa mãn hệ bất phương trình
\(\left\{{}\begin{matrix}2y\ge x\\y\le3x\\2x+3y\le12\end{matrix}\right.\)
Tìm GTLN và GTNN của F(\(x;y\)) = \(x+y-2\)
Cho x,y>0 thỏa mãn: \(x+2y\le5\)
Tìm gtnn của biểu thức:
\(P=x^2+2y^2-2x-9y+\dfrac{1}{x}+\dfrac{4}{y}+2024\)
cho x,y là các số thực dương thỏa mãn: 1≤x≤2, 1≤y≤2. Tìm giá trị nhỏ nhất.
P=\(\dfrac{x+2y}{x^2+3y+5}+\dfrac{y+2x}{y^2+3x+5}+\dfrac{1}{4\left(x+y-1\right)}\)
Do \(1\le x\le2\Rightarrow\left(x-1\right)\left(x-2\right)\le0\)
\(\Leftrightarrow x^2+2\le3x\)
Hoàn toàn tương tự ta có \(y^2+2\le3y\)
Do đó: \(P\ge\dfrac{x+2y}{3x+3y+3}+\dfrac{2x+y}{3x+3y+3}+\dfrac{1}{4\left(x+y-1\right)}\)
\(P\ge\dfrac{x+y}{x+y+1}+\dfrac{1}{4\left(x+y-1\right)}\)
Đặt \(a=x+y-1\Rightarrow1\le a\le3\)
\(\Rightarrow P\ge f\left(a\right)=\dfrac{a+1}{a+2}+\dfrac{1}{4a}\)
\(f'\left(a\right)=\dfrac{3a^2-4a-4}{4a^2\left(a+2\right)^2}=\dfrac{\left(a-2\right)\left(3a+2\right)}{4a^2\left(a+2\right)^2}=0\Rightarrow a=2\)
\(f\left(1\right)=\dfrac{11}{12}\) ; \(f\left(2\right)=\dfrac{7}{8}\) ; \(f\left(3\right)=\dfrac{53}{60}\)
\(\Rightarrow f\left(a\right)\ge\dfrac{7}{8}\Rightarrow P_{min}=\dfrac{7}{8}\) khi \(\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)
Cho x,y là các số thực thỏa mãn x+y=1. Tìm GTNN của
P=2x4+x3(2y-1)+y3(2x-1)+2y4
1)Tìm x,y thỏa mãn:
x2-3xy+2y2 = 0 và 2x2 - 3xy + 5 = 0
2) Tìm x,y thỏa mãn:
(x-y)2 + 3(x-y) = 4 và 2x + 3y = 12
x^2 + 3xy + 2y^2 = 0
=> x^2 + xy + 2xy + 2y^2 = 0
=> x(x+y) + 2y ( x+ y ) = 0 =
=> ( x+ 2y)( x + y ) = 0
=> x = -2y hoặc x = -y
(+) x = -2y thay vào ta có :
8y^2 + 6y + 5 = 0 giải ra y => x
(+) thay x = -y ta có :
2y^2 - 3y + 5 = 0 tương tự
Tìm các số thực x, y thỏa mãn:
a) 2x + 1 + (1 – 2y)i = 2 – x + (3y – 2)i
b) 4x + 3 + (3y – 2)i = y +1 + (x – 3)i
c) x + 2y + (2x – y)i = 2x + y + (x + 2y)i