Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Big City Boy
Xem chi tiết
Nguyễn Ngọc Huy Toàn
9 tháng 2 2022 lúc 21:55

a) Ta có B,C,F,E cùng thuộc đường tròn (O) => tứ giác BCEF nội tiếp

BCEF là hình thang cân

b) Ta có góc BAE = 90 độ - góc ABC = 90 độ  - góc AFC = góc CAF

Suy ra: góc BAE = góc CAF

c) Ta có BH⊥AC

CF⊥AC

Suy ra BH//CF(1)

 CH//BF(2)

Từ (1),(2)⇒tứ giác BHCF là hình bình hành

Mà I là trung điểm của BC

Suy ra I là trung điểm của HF hay I,H,F thẳng hàng

An Vu
Xem chi tiết
Giang Nguyễn
Xem chi tiết
Nhat Cuong
Xem chi tiết
Lam Thanh Chuyen
23 tháng 3 2017 lúc 19:23

ko biết

Cô Hoàng Huyền
24 tháng 3 2017 lúc 15:06

Đường tròn c: Đường tròn qua A, B, C Đoạn thẳng f: Đoạn thẳng [A, B] Đoạn thẳng g: Đoạn thẳng [B, C] Đoạn thẳng h: Đoạn thẳng [A, C] Đoạn thẳng k: Đoạn thẳng [A, I] Đoạn thẳng l: Đoạn thẳng [B, K] Đoạn thẳng m: Đoạn thẳng [H, C] Đoạn thẳng n: Đoạn thẳng [K, C] Đoạn thẳng p: Đoạn thẳng [I, C] Đoạn thẳng q: Đoạn thẳng [K, I] Đoạn thẳng r: Đoạn thẳng [A, K] Đoạn thẳng t: Đoạn thẳng [B, F] Đoạn thẳng a: Đoạn thẳng [H, F] A = (-6.94, 5.84) A = (-6.94, 5.84) A = (-6.94, 5.84) B = (-8.06, 1.8) B = (-8.06, 1.8) B = (-8.06, 1.8) C = (-1.34, 1.82) C = (-1.34, 1.82) C = (-1.34, 1.82) Điểm D: Giao điểm của i, g Điểm D: Giao điểm của i, g Điểm D: Giao điểm của i, g Điểm E: Giao điểm của j, h Điểm E: Giao điểm của j, h Điểm E: Giao điểm của j, h Điểm H: Giao điểm của i, j Điểm H: Giao điểm của i, j Điểm H: Giao điểm của i, j Điểm K: Giao điểm của c, j Điểm K: Giao điểm của c, j Điểm K: Giao điểm của c, j Điểm I: Giao điểm của c, i Điểm I: Giao điểm của c, i Điểm I: Giao điểm của c, i Điểm J: Trung điểm của m Điểm J: Trung điểm của m Điểm J: Trung điểm của m Điểm O: Tâm của c Điểm O: Tâm của c Điểm O: Tâm của c Điểm F: Giao điểm của c, s Điểm F: Giao điểm của c, s Điểm F: Giao điểm của c, s Điểm P: Trung điểm của A, C Điểm P: Trung điểm của A, C Điểm P: Trung điểm của A, C

a. Ta thấy \(\widehat{HDC}=\widehat{HEC}=90^o\) nên CDHE là tứ giác nội tiếp đường tròn đường kính HC.

b. Ta thấy ngay \(\widehat{IAC}=\widehat{KBC}\) (Cùng phụ với góc ACB) nên \(\widebat{IC}=\widebat{KC}\) (Góc nội tiếp)

suy ra IC = KC ( Liên hệ giữa cung và dây)

Vậy nên tam giác IKC cân tại C.

c. Do \(\widebat{IC}=\widebat{KC}\) nên \(\widehat{KAC}=\widehat{ACI}\) (Góc nội tiếp)

Xét tam giác AHK có AE vừa là đường cao, vừa là phân giác nên AHK là tam giác cân tại A, hay AH = AK.

d. Ta thấy do BOF là đường kính nên \(\widehat{BCF}=90^o\Rightarrow\) AH // FC (Cùng vuông góc với BC).

Tương tự AF // HC vì cùng vuông góc với AB. Vậy thì AFCH là hình bình hành hay AC giao FH tại trung điểm mỗi đường.

P là trung điểm AC nên F cũng là trung điểm FH. Vậy F, H, P thẳng hàng.

Ánh Nhật
Xem chi tiết
Phan Văn Hiếu
Xem chi tiết
vũ tiền châu
1 tháng 9 2017 lúc 22:04

đây nhé, cậu chịu khó tự vẽ hình vậy 

câu a, ta có MN//AB(đường trung bình ) nên \(\widehat{MNC}=\widehat{BAC}\)

mà \(\hept{\begin{cases}\widehat{MNC}+\widehat{ONM}=90^o\\\widehat{BAC}+\widehat{ABH}=90^o\end{cases}}\) => \(\widehat{ABH}=\widehat{MNO}\)

b)  kẻ \(BK⊥BC=B\) (K là giao của OC với BK)

ta có \(OM=\frac{1}{2}BK\Rightarrow O\) là trung điểm  của KC=>ON //AK( đường tb)

mà ON//BH=>AK//BH và ta có BK//AH nên AKBH là hình bình hành => BK=AH => 2OM=AH

mà 2GM=AG =>\(\frac{GM}{OM}=\frac{AG}{AH}\) (1)

mặt khác ta có \(\widehat{HAM}=\widehat{OMG}\) (so le trong )   (2) 

từ (1) và (2) =>tam giác AHG đồng dặng với tam giác MOG(ĐPCM)

c) dựa vào câu b nhé

Ben 10
1 tháng 9 2017 lúc 21:33

dễ mà

 a, ta có 
tam giác ABH đồng dạng với tam giác MNO (g.g) (chứng minh = cách sd t/c cua 2 góc có cạnh t/ứ //) 
=> AH/OM = AB /MN =2 => DPCM 
b,Gọi giao điểm của HO và AM là G' 
cần chứng minh G' trùng G 
Ta c/m đc tam giác AG'H đồng dạng tg MG'O 
=> AG' /MG' =AH/MO =2 => G' chia đoạn AM theo ti số 2:1 => G' là trọng tâm => G' trùng G 
=> ĐPCM

vậy là 3 k nhé

*****

Phan Văn Hiếu
1 tháng 9 2017 lúc 21:47

linh tinh quá bạn ơi làm thì làm cho đúng copy trên google nói làm zì

Vô Danh Tiểu Tốt
Xem chi tiết

A B C D I R H K J M N O

Gọi M, N lần lượt là chân đường cao hạ từ B,C xuống AC,AB

Ta có \(DH.DA=DB.DC\)(1)

Để chứng minh K là trực tâm tam giác IBC ta chứng minh \(DK.DJ=DB.DC\)hay \(DK.DJ=DH.DA\)

Ta có NC,NA lần lượt là phân giác trong và phân giác ngoài của \(\widehat{MND}\)nên

\(\frac{HK}{HD}=\frac{NK}{ND}=\frac{AK}{AH}\)

\(\Rightarrow AK.HD=AD.HK\)

\(\Leftrightarrow HD\left(AD-DK\right)=AD\left(DK-DH\right)\)

\(\Leftrightarrow2.AD.DH=DK\left(DA+DH\right)\)

\(\Leftrightarrow2.AD.DH=2.DK.DJ\)

\(\Rightarrow AD.DH=DK.DJ\left(2\right)\)

Từ (1) và (2) ta  có\(DK.DJ=DH.DA\)

=> K là trực tâm của tam giác IBC

Khách vãng lai đã xóa
buileanhtrung
Xem chi tiết
mystic and ma kết
4 tháng 4 2018 lúc 14:00

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

Đào Thị Cẩm Tú
Xem chi tiết
ミ★Zero ❄ ( Hoàng Nhật )
8 tháng 3 2023 lúc 14:02

a, Gọi I là trung điểm của BC 

Tam giác BEC vuông tại E trung tuyến EI nên IE = IB = IC 

Tam giác BFC vuông tại F trung tuyến FI nên IF = IB = IC

Vậy tứ giác BEFC cùng thuộc đường tròn tâm I bán kính IB 

b,  Ta có :

\(\widehat{ACK}=90^0\) ( góc nội tiếp chắn nửa đường tròn )

= > BH // CK ( cùng vuông góc với AC )

Tương tự ta cũng có CH // BK 

= > BHCK là hình bình hành

= > 2 đường chéo cắt nhau tại trung điểm của mỗi đường

Mà I là trung điểm của BC 

= > H,I,K thẳng hàng ( đpcm )

c, Dễ thấy các tứ giác AFHE và BFHD nội tiếp nên :

\(\widehat{DFE}=\widehat{DFH}+\widehat{HFE}=\widehat{HBD}+\widehat{HAF}=2\widehat{HBD}=2.\left(90^0-\widehat{C}\right)=180^0-2\widehat{C}\)

( Do góc HBD và HAF cùng phụ với góc C )

Lại có :

Tam giác EIC cân tại I nên :

\(\widehat{EIC}=180^0-\widehat{IEC}-\widehat{ECI}=180^0-2\widehat{C}\)

\(=>\widehat{EIC}=\widehat{DFE}\)

= > Tứ giác DFEI là tứ giác nội tiếp 

= > D,F,E,I cùng thuộc 1 đường tròn