Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
le diep
Xem chi tiết
Phan Văn Hiếu
28 tháng 12 2016 lúc 10:09

\(A=x^2-2xy+y^2+2x-2y+1+y^2-8y+16+2016\)

\(A=\left(x-y\right)^2+2\left(x-y\right)+1+\left(y-4\right)^2+2016\)

\(A=\left(x-y+1\right)^2+\left(y-4\right)^2+2016\)

vì \(\left(x-y+1\right)^2\ge0\)

\(\left(y-4\right)^2\ge0\)

nên \(\left(x-y+1\right)^2+\left(y-4\right)^2+2016\ge2016\)

dấu bằng xảy ra \(\Leftrightarrow\hept{\begin{cases}x=3\\y=4\end{cases}}\)

vậy gtnn của bt là 2016 khi x=3;y=4

đề này của sở giáo dục và đào tạo tỉnh hà nam

Ngân
27 tháng 12 2016 lúc 18:34

mk chiu ban ak di thi mk cug vao caau day nhưng ko biet lam

Dương Thảo Nhi
Xem chi tiết

hoc tot de lam lien doi nho chua.

_Guiltykamikk_
7 tháng 4 2018 lúc 15:18

\(A=2x^2+y^2-2xy-2x+3\)

\(A=\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+2\)

\(A=\left(x-y\right)^2+\left(x-1\right)^2+2\)

Mà \(\left(x-y\right)^2\ge0\forall x;y\)

       \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow A\ge2\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}x-y=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=1\end{cases}}\)

Vậy Min A = 2 khi x=y=1

_Guiltykamikk_
7 tháng 4 2018 lúc 15:30

\(B=x^2-2xy+2y^2+2x-10y+17\)

\(B=\left(x^2-2xy+y^2\right)+y^2+2x-10y+17\)

\(B=\left[\left(x-y\right)^2+2\left(x-y\right)+1\right]-8y+y^2+16\)

\(B=\left(x-y+1\right)^2+\left(y^2-8y+16\right)\)

\(B=\left(x-y+1\right)^2+\left(y-4\right)^2\)

Mà \(\left(x-y+1\right)^2\ge0\forall x;y\)

       \(\left(y-4\right)^2\ge0\forall y\)

\(\Rightarrow B\ge0\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}x-y+1=0\\y-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=4\end{cases}}\)

Vậy Min B = 0 khi (x;y)=(3;4)

minh anh
Xem chi tiết
Nguyễn thị lan
Xem chi tiết
Natsu Dragneel
21 tháng 2 2020 lúc 9:27

A = x2 + 2y2 - 2xy + 2x - 2y + 1

= x2 - 2xy + y2 + 2 ( x - y ) + 1 + y2

= ( x - y )2 + 2 ( x - y ) + 1 + y2

= ( x - y + 1 )2 + y2 ≥ 0

Dấu = xảy ra khi :

\(\left\{{}\begin{matrix}x-y+1=0\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=0\end{matrix}\right.\)

B = x2 + 2y2 - 2xy + 2x - 10y

= x2 - 2xy + y2 + 2x - 2y + 1 + y2 - 8x + 16 - 17

= ( x - y )2 + 2 ( x - y ) + 1 + ( y - 4 )2 - 17

= ( x - y + 1 )2 + ( y - 4 )2 - 17 ≥ - 17

Dấu = xảy ra khi :

\(\left\{{}\begin{matrix}x-y+1=0\\y-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)

Khách vãng lai đã xóa
La Lo Li
Xem chi tiết
Hà_Phương_Linh02
Xem chi tiết
alibaba nguyễn
5 tháng 8 2016 lúc 11:00
GTNN là -17 khi x=3;y=4
Bexiu
29 tháng 9 2017 lúc 17:34

Ta thấy x2x2 và y2y2 luôn lớn hơn hoặc bằng 0 với mọi x

Nên để A đạt GTNN thì x = 0 và y = 0, do đó A = 0 + 0 - 0 + 0 - 0 = 0

Vậy Min A = 0

Còn cách khác nữa như sau :

Nhập biểu thức vào máy : 2x + 4y - 2xy + 2x - 10y = 0 SHIFT SOLVE

     Y? 0 =

Solve for X? 0 =

KQ ra Solve x = 0

Vậy Min A = 0 khi x = 0 và y = 0.

kien nguyen van
29 tháng 9 2017 lúc 18:37

Bexiu ???

OoO Kún Chảnh OoO
Xem chi tiết
Đặng Cẩm Vân
Xem chi tiết
kuroba kaito
7 tháng 4 2018 lúc 13:35

A=2x2+y2-2xy-2x+3

= (x2-2xy+y2)+(x2-2x+1)+2

= (x-y)2+(x-1)2 +2

do (x-y)2 ≥ 0 ∀ x,y

(x-1)2 ≥ 0 ∀ x

=> (x-y)2+(x-1)2 +2 ≥ 2

=> A ≥ 2

nimA=2 dấu "=" xảy ra khi

x-y=0

x-1=0

=> x=y=1

vậy nimA =2 khi x=y=1

Ng Minh
Xem chi tiết