-5x + 25 =2.|x-4|
tìm x
tìm x: 3/5x-25/4=1/2:x+5/4
\(\dfrac{3}{5}x-\dfrac{25}{4}=\dfrac{1}{2}:x+\dfrac{5}{4}\)
=>\(\dfrac{3}{5}x-\dfrac{25}{4}-\dfrac{1}{2x}+\dfrac{5}{4}\)
=>\(\dfrac{3}{5}x-\dfrac{1}{2x}=\dfrac{30}{4}\)
=>\(\dfrac{3x}{5}-\dfrac{1}{2x}=\dfrac{30}{4}\)
=>\(\dfrac{6x^2-5}{10x}=\dfrac{30}{4}\)
=>\(6x^2-5=10x\cdot\dfrac{30}{4}=5x\cdot15=75x\)
=>\(6x^2-75x-5=0\)
=>\(x=\dfrac{75\pm\sqrt{5745}}{12}\)
Tìm x:
1, (5x-1)(5x+1)=25^2-7x+15
2,(3x-5)(x+1)-(3x-1)(x+1)=x-4
1) \(\left(5x-1\right)\left(5x+1\right)=25x^2-7x+15\)
\(\Leftrightarrow25x^2-1=25x^2-7x+15\)
\(\Leftrightarrow7x=16\Leftrightarrow x=\dfrac{16}{7}\)
2) \(\left(3x-5\right)\left(x+1\right)-\left(3x-1\right)\left(x+1\right)=x-4\)
\(\Leftrightarrow3x^2-2x-5-3x^2-2x+1=x-4\)
\(\Leftrightarrow5x=0\Leftrightarrow x=0\)
Tìm x biết:
x(x+4)(4-x)+(x-5)(x^2+5x+25)=3
x(x+4)(4-x)+(x-5)(x2+5x+25)=3
(x2+4x)(4-x)+x3+5x2+25x-5x2-25x-125=3
4x2-x3+16x-4x2+x3+5x2+25x-5x2-25x=3+125
(4x2-4x2)-(x3-x3)+(16x+25x-25x)+(5x2-5x2)=128
16x=128
x=128:16
x=8
1) 3(x-2) + 4(x-1) = 25
2) (5x-3)(x-2) = (x-1)(x-2)
3) (x-2)² = 4(x-1)²
1)
\(3\left(x-2\right)+4\left(x-1\right)=25\)
\(3x-6+4x-4=25\)
\(7x-10=25\\ 7x=35\\ x=5\)
2)
\(\left(5x-3\right)\left(x-2\right)=\left(x-1\right)\left(x-2\right)\)
\(\left(5x-3\right)\left(x-2\right)-\left(x-1\right)\left(x-2\right)=0\)
\(\left(x-2\right)\left(5x-3-x+1\right)=0\)
\(\left(x-2\right)\left(4x-2\right)=0\)
\(=>\left[{}\begin{matrix}x-2=0\\4x-2=0\end{matrix}\right.=>\left[{}\begin{matrix}x=2\\x=\dfrac{1}{2}\end{matrix}\right.\)
3)
\(\left(x-2\right)^2=4\left(x-1\right)^2\)
\(x^2-4x+4=4\left(x^2-2x+1\right)\)
\(x^2-4x+4=4x^2-8x+4\)
\(x^2-4x+4-4x^2+8x-4=0\)
\(-3x^2+4x=0\)
\(x\left(-3x+4\right)=0\)
\(=>\left[{}\begin{matrix}x=0\\-3x+4=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=\dfrac{4}{3}\end{matrix}\right.\)
1) 3(x-2) + 4(x-1) = 25 2) (5x-3)(x-2) = (x-1)(x-2) 3) (x-2)² = 4(x-1)²
\(3\left(x-2\right)+4\left(x-1\right)=25\)
\(\Leftrightarrow3x-6+4x-4=25\)
\(\Leftrightarrow7x=35\)
\(\Leftrightarrow x=5\)
\(\left(5x-3\right)\left(x-2\right)=\left(x-1\right)\left(x-2\right)\)
\(\Leftrightarrow\left(5x-3\right)\left(x-2\right)-\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(5x-3-x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(4x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\4x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-1}{2}\end{matrix}\right.\)
\(\left(x-2\right)^2=4\left(x-1\right)^2\)
\(\Leftrightarrow\left(x-2\right)^2-4\left(x-1\right)^2=0\)
\(\Leftrightarrow\left[\left(x-2\right)-2\left(x-1\right)\right]\left[\left(x-2\right)+2\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-2-2x+2\right)\left(x-2+2x-2\right)=0\)
\(\Leftrightarrow\left(-x\right)\left(3x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-x=0\\3x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{3}\end{matrix}\right.\)
Tìm X:
a)(x-4)(x+4)=9
b)x2-4x+4-(5x-2)2=0
c)4x2+4+1-x2-10x-25=0
d)(x2+x+7)(x2+x-7)=(x2+x)2-7x
a)
⇔ \(x^2-16=9\)
⇔ \(x^2=25\)
⇔ \(x=\pm5\)
b)
⇔ \(x^2-4x+4-25x^2+20x-4=0\)
⇔ \(16x-24x^2=0\)
⇔ \(8x\left(2-3x\right)=0\)
⇒ \(\left[{}\begin{matrix}x=0\\2-3x=0\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy \(x=0\) hoặc \(x=\dfrac{2}{3}\)
c)
⇔ \(3x^2-10x-20=0\)
⇔ \(x^2-2.x.\dfrac{5}{3}+\dfrac{25}{9}-\dfrac{205}{9}=0\)
⇔ \(\left(x-\dfrac{5}{3}\right)^2=\dfrac{205}{9}\)
⇒ \(\left[{}\begin{matrix}x-\dfrac{5}{3}=\sqrt{\dfrac{205}{9}}\\x-\dfrac{5}{3}=-\sqrt{\dfrac{205}{9}}\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=\dfrac{\sqrt{\text{205}}}{\text{3}}+\dfrac{5}{3}\\x=-\dfrac{\sqrt{\text{205}}}{\text{3}}+\dfrac{5}{3}\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=\dfrac{15+\text{9}\sqrt{\text{205}}}{\text{9}}\\\text{x}=-\dfrac{15+\text{9}\sqrt{\text{205}}}{\text{9}}\end{matrix}\right.\)
Vậy...
d)
⇔ \(\left(x^2+x\right)^2-49=\left(x^2+x\right)^2-7x\)
⇔ 7x = 49
⇔ x=7
Vậy...
x.( x+4 ).( 4 - x) (x-5) ( x2+ 5x+ 25) tìm x, bt
cho phân thức \(A=\frac{x^2}{5x+25}+\frac{2x-10}{x}+\frac{50+5x}{x^2+5x}\)
a) tìm điều kiên để A xác định.Rút gọn A.
b)tìm x để A=-4
Tìm x, biết:
a,(x-3)(4-5x)=0
b,(x-1)2=25
a) \(\left(x-3\right)\left(4-5x\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-3=0\\4-5x=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=3\\x=\frac{4}{5}\end{array}\right.\)
b) \(\left(x-1\right)^2=25\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=5\\x-1=-5\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=6\\x=-4\end{array}\right.\)
a)(x-3)(4-5x)\(\Leftrightarrow\)\(\left[\begin{array}{nghiempt}x-3=0\\4-5x=0\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=3\\x=\frac{4}{5}\end{array}\right.\)
Vậy x=3 và \(\frac{4}{5}\)
b) \(\left(x-1\right)^2=25\Rightarrow\begin{cases}x-1=5\\x-1=-5\end{cases}\)
\(\Rightarrow\begin{cases}x=6\\x=-4\end{cases}\)
Vậy x=-4 và 6
\(a.\)
\(\left(x-3\right)\left(4-5x\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-3=0\\4-5x=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=3\\x=0,8\end{array}\right.\)
Vậy : \(x\in\left\{0,8;3\right\}\)
\(b.\)
\(\left(x-1\right)^2=25\)
\(\Leftrightarrow\left(x-1\right)^2=\left(\pm5\right)^2\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=-5\\x-1=5\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-4\\x=6\end{array}\right.\)
Vậy : \(x\in\left\{-4;6\right\}\)
Tìm x biết a) x(x-25)=0 b)2x(x-4)-x(2x-1)=-28 c)x^2 -5x=0 d)(x-2)^2-(x+1)(x+3)=-7 e)(3x+5).(4-3x)=0 f)x^2-1/4=0
a: \(x\in\left\{0;25\right\}\)
c: \(x\in\left\{0;5\right\}\)