Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Maéstrozs
Xem chi tiết
Nguyễn Phương Uyên
27 tháng 2 2020 lúc 12:16

a, xét tam giác ABH và tam giác MBH có : BH chung

góc AHB = góc MHB = 90

AH = HM do H là trđ của AM 

=> tam giác ABH = tam giác MBH (2cgv)

b, tam giác ABH = tam giác MBH (câu a)

=> góc ABH  góc MBH (đn)

và AB= BM (đn)

xét tam giác ABC và tam giác  MBC có : BC chung

=> tam giác ABC = tam giác MBC (c-g-c)

=> góc BAC = góc BMC (đn)

c, xét tam giác BIA và tam giác CIN có : 

góc BIA = góc CIN (đối đỉnh)

BI = IC do I là trđ của BC (gt)

AI = IN do I là trđ của AN (gt)

=> tam giác BIA = tam giác CIN (c-g-c)

=> AB = CN (đn)

AB = MB (Câu b)

=> CN = BM 

d, dùng pytago thôi

Khách vãng lai đã xóa
Nguyễn Ngân Phương
Xem chi tiết
Phùng Thảo Nhi
1 tháng 3 2020 lúc 9:09

a,Ta có:
 \(AH\perp BC\) nên \(\widehat{AHB}\) +90 độ.
Vì M là tia đối của HA nên \(\widehat{MHB}\)= 90 độ.
Xét \(\Delta ABH\) và \(\Delta MBH\)có
AH = MH (gt)
\(\widehat{AHB}\) = \(\widehat{MHB}\) (= 90 độ )
BH : cạnh chung

\(\Rightarrow\Delta ABH=\Delta MBH\)( c.g.c )

b,Xét \(\Delta AHCv\text{à}\Delta MHC\)Ta có:

AH = HM (gt)

\(\widehat{AHC}\)\(\widehat{MHC}\)(= 90 độ)

HC : cạnh chung

\(\Rightarrow\Delta AHC=\Delta MHC\)( c.g.c)

\(\Rightarrow\)AC=CM ( t/ứ)

Mà AC = CN (gt) và CM = AC (cmt)

nên CM = CN

\(\Rightarrow\Delta CMN\)cân 

Khách vãng lai đã xóa
BUNNY SURI
Xem chi tiết
 Phạm Trà Giang
14 tháng 2 2020 lúc 21:06

A B H M N C I

a, Xét \(\Delta ABH\) và \(\Delta MBH\) ta có:

\(\widehat{AHB}=\widehat{MHB}=90^o,AH=MH,\)  cạnh chung \(BH\)

\(\Rightarrow\Delta ABH=\Delta MBH\left(c.g.c\right)\) ( ĐPCM )

b, Vì \(\Delta ABH=\Delta MBH\Rightarrow AB=MB\) ( 2 cạnh tương ứng )

\(\widehat{ABH}=\widehat{MBH}\) ( 2 góc tương ứng ) \(\Rightarrow\widehat{ABC}=\widehat{MBC}\)

Xét \(\Delta ABC\) và \(\Delta MBC\) ta có:

\(AB=MB,\widehat{ABC}=\widehat{MBC},\) cạnh chung \(BC\)

\(\Rightarrow\Delta ABC=\Delta MBC\left(c.g.c\right)\)

\(\Rightarrow\widehat{BAC}=\widehat{BMC}\) ( 2 góc tương ứng ) ( ĐPCM )

c, Xét \(\Delta AHI\) và \(\Delta MHI\) ta có:

\(AH=MH,\widehat{AHI}=\widehat{MHI}=90^o,\) cạnh chung \(HI\)

\(\Rightarrow\Delta AHI=\Delta MHI\left(c.g.c\right)\)

\(\Rightarrow AI=MI\) ( cạnh tương ứng ) \(\Rightarrow AI=NI=MI\Rightarrow AI=MI\)

\(\widehat{AIH}=\widehat{MIH}\) ( 2 góc tương ứng ) \(\Rightarrow\widehat{AIB}=\widehat{MIB}\)(1)

Vì \(\widehat{AIH}\) và \(\widehat{CIN}\) là 2 góc đối đỉnh \(\Rightarrow\widehat{AIB}=\widehat{CIN}\) (2)

Từ (1) và (2) \(\Rightarrow\widehat{MIB}=\widehat{AIB}=\widehat{CIN}\Rightarrow\widehat{MIB}=\widehat{CIN}\)

Vì I là trung điểm của BC => BI = CI

Xét \(\Delta BIM\) và \(\Delta CIN\) ta có:

\(BI=CI,\widehat{MIB}=\widehat{CIN},MI=NI\)

\(\Rightarrow\Delta BIM=\Delta CIN\left(c.g.c\right)\)

\(\Rightarrow NC=MB\) ( 2 cạnh tương ứng ) ( ĐPCM )

d, Xét tam giác vuông ABH, theo định lý Py-ta-go ta có:

\(AB^2=AH^2+BH^2\Rightarrow13^2=AH^2+12^2\Rightarrow169=AH^2+144\)

\(\Rightarrow AH^2=169-144=25\Rightarrow AH=\sqrt{25}=5\)

Xét tam giác vuông AHC, theo định lý Py-ta-go ta có: 

\(AC^2=AH^2+CH^2\Rightarrow AC^2=5^2+16^2\Rightarrow AC^2=25+256\)

\(\Rightarrow AC^2=281\Rightarrow AC=\sqrt{281}\)

Vì điểm H nằm giữa điểm B và điểm C \(\Rightarrow BC=AH+CH\Rightarrow BC=12+16\Rightarrow BC=28\)

Khách vãng lai đã xóa
Bảo Lam Nguyễn
Xem chi tiết
mr eggy
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 1 2023 lúc 22:30

a: Xét ΔAMB và ΔNMC có

MA=MN

góc AMB=góc NMC

MB=MC

Do đó: ΔAMB=ΔNMC

b: Xét ΔBAI có

BH vừa là đường cao, vừa là trung tuyến

nên ΔBAI cân tại B

=>BA=BI=CN

Hà Anh Phạm
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 3 2022 lúc 21:05

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

Do đó: ΔABH=ΔAHC

Suy ra: BH=CH

hay H là trung điểm của BC

b: Xét ΔABH vuông tại H và ΔDCH vuông tại H có

HB=HC

HA=HD

Do đó: ΔABH=ΔDCH

c: Ta có: ΔABH=ΔDCH

nên AB=DC

mà AB=AC

nên DC=AC

hay ΔACD cân tại C

Trương Quang Đang
Xem chi tiết
Huỳnh Kim Ngân
11 tháng 5 2022 lúc 9:30

Tham khảo

Anser reply image 
Nguyễn Ngân Phương
Xem chi tiết
Nguyễn Ngân Phương
Xem chi tiết
Nguyễn Ngân Phương
Xem chi tiết