Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Phương Ngọc
Xem chi tiết
Girl
13 tháng 3 2018 lúc 18:03

Đặt: \(\left|x-2017\right|=t\ge0\) ta có: \(l=\frac{t+2017}{t+2018}=\frac{t+2018-1}{t+2018}=1-\frac{1}{t+2018}\ge1-\frac{1}{2018}=\frac{2017}{2018}\)

Dấu "=" xảy ra khi: \(t=0\Leftrightarrow x=2017\)

Tề Mặc
14 tháng 3 2018 lúc 18:00

Đặt: |x−2017|=t≥0 ta có: l=t+2017t+2018 =t+2018−1t+2018 =1−1t+2018 ≥1−12018 =20172018 

Dấu "=" xảy ra khi: t=0⇔x=2017

 ...

..

tth_new
29 tháng 12 2018 lúc 8:11

\(A=\frac{\left|x-2017\right|+2017}{\left|x-2017\right|+2018}=1-\frac{1}{\left|x-2017\right|+2018}\)

A bé nhất khi \(\frac{1}{\left|x-2017\right|+2018}\) lớn nhất.

Mà \(\frac{1}{\left|x-2018\right|+2018}\le\frac{1}{2018}\forall x\) (do \(\left|x-2018\right|\ge0\forall x\))

Suy ra \(A\ge1-\frac{1}{2018}=\frac{2017}{2018}\)

Dấu "=" xảy ra \(\Leftrightarrow\left|x-2017\right|=0\Leftrightarrow x=2017\)

Vậy \(A_{min}=\frac{2017}{2018}\Leftrightarrow x=2017\)

Xem chi tiết
Nguyễn Tân Vương
11 tháng 3 2022 lúc 20:02

\(C=\dfrac{\left|X-2017\right|+2018}{\left|X-2017\right|+2019}=\dfrac{\left(\left|X-2017\right|+2019\right)-1}{\left|X-2017\right|+2019}=1-\dfrac{1}{\left|X-2017\right|+2019}\)

\(\text{Biểu thức C đạt giá trị nhỏ nhất khi }\left|x-2017\right|+2019\text{ có giá trị nhỏ nhất}\)

\(\text{Mà }\left|x-2017\right|\ge0\text{ nên }\left|x-2017\right|+2019\ge2019\)

\(\text{Dấu "=" xảy ra khi }x=2017\Rightarrow C=\dfrac{2018}{2019}\)

\(\text{Vậy giá trị nhỏ nhất của C là }\dfrac{2018}{2019}\text{ khi }x=2017\)

Vũ Trung Hiếu
Xem chi tiết
Vũ Hoàng Trung
27 tháng 2 2020 lúc 15:15

Sao chép

Khách vãng lai đã xóa
Vũ Trung Hiếu
Xem chi tiết
Buddy
11 tháng 2 2020 lúc 12:26
https://i.imgur.com/ZLOzZOI.png
Khách vãng lai đã xóa
Nguyễn Quỳnh Vân
11 tháng 2 2020 lúc 13:00

\(C=\dfrac{|x-2017|+2018}{|x-2017|+2019}\)

\(=\dfrac{|x-2017|+2018+1-1}{|x-2017|+2019}\)

\(=\dfrac{|x-2017|2019-1}{|x-2017|+2019}\)

\(=\dfrac{|x-2017|+2019}{|x-2017|+2019}-\dfrac{1}{|x-2017|+2019}\)

\(=1-\dfrac{1}{|x-2017|+2019|}\)

Để C đạt giá trị nhỏ nhất thì \(\dfrac{1}{|x-2017|+2019}\) là số dương nhỏ nhất

\(=> |x-2017|+2019\) là số dương nhỏ nhất

Ta có : \(|x-2017|\geq0\forall{x} \) dấu "=" xảy ra khi x=2017

\(=>|x-2017|+2019\geq2019\forall{x}\)

Khi đó giá trị nhỏ nhất của \(C=1-\dfrac{1}{2019}=\dfrac{2018}{2019}\) khi x = 2017

Vậy.....

Khách vãng lai đã xóa
nguyen phu trong
Xem chi tiết
Hoàng Quốc Tuấn
Xem chi tiết
Kim Hoàng Oanh
Xem chi tiết
thỏ
12 tháng 12 2017 lúc 14:31

vì |x+2017|\(\ge\)0

=> |x+2017|+2018\(\ge\)2018

|x+2017|+2019\(\ge\)2019

=> GTNN của \(\dfrac{\left|x+2017\right|+2018}{\left|x+2017\right|+2019}\)=\(\dfrac{2018}{2019}\)

Unruly Kid
12 tháng 12 2017 lúc 15:36

Đặt \(t=\left|x+2017\right|\ge0\)

Đặt biểu thức là T, ta có:

\(T=\dfrac{t+2018}{t+2019}=\dfrac{t+2019-1}{t+2019}=1-\dfrac{1}{t+2019}\)

Ta có: \(t\ge0\Rightarrow t+2019\ge2019\)

\(\Rightarrow\dfrac{1}{t+2019}\le\dfrac{1}{2019}\)

\(\Rightarrow-\dfrac{1}{t+2019}\ge-\dfrac{1}{2019}\)

\(\Rightarrow T\ge1-\dfrac{1}{2019}=\dfrac{2008}{2009}\)

GTNN của T là \(\dfrac{2008}{2009}\) khi \(t=0\Leftrightarrow\left|x+2017\right|=0\Leftrightarrow x=-2017\)

Hoàng Quốc Tuấn
Xem chi tiết
Trần Thị Hảo
Xem chi tiết
Nguyễn Việt Anh
7 tháng 11 2019 lúc 20:47

Ta có:

|x−2015|+|x−2016|+|x−2017||x−2015|+|x−2016|+|x−2017|

=|x−2016|+|x−2015|+|x−2017|=|x−2016|+|x−2015|+|x−2017|

=|x−2016|+(|x−2015|+|x−2017|)=|x−2016|+(|x−2015|+|x−2017|)

∗)∗) Áp dụng BĐT |a|+|b|≥|a+b||a|+|b|≥|a+b| ta có:

|x−2015|+|x−2017|=|x−2015|+|x−2017|= |x−2015|+|2017−x||x−2015|+|2017−x|

≥|x−2015+2017−x|=|2|=2≥|x−2015+2017−x|=|2|=2

∗)∗) Dễ thấy: |x−2016|≥0∀x|x−2016|≥0∀x

⇔|x−2015|+|x−2016|+|x−2017|⇔|x−2015|+|x−2016|+|x−2017| ≥2≥2

Đẳng thức xảy ra ⇔⎧⎩⎨⎪⎪x−2015≥0x−2016=0x−2017≤0⇔⎧⎩⎨⎪⎪x≥2015x=2016x≤2017⇔{x−2015≥0x−2016=0x−2017≤0⇔{x≥2015x=2016x≤2017 ⇔x=2016⇔x=2016

Vậy GTNNGTNN của biểu thức là 2⇔x=2016

Khách vãng lai đã xóa