Tìm \(x,y\)nguyên thỏa mãn \(\left(y+2\right)\left(x^2+1\right)=2x^3+3x+1\)
Tìm các cặp số nguyên (x; y) thỏa mãn: \(\left|x^2-2x\right|-\dfrac{1}{2}< y< 2-\left|x-1\right|\)
Tìm các số nguyên x;y thỏa mãn: \(2y\left(2x^2+1\right)-2x\left(2y^2+1\right)+1=x^3y^3\left(1\right)\)
Tìm cặp số nguyên x,y thỏa mãn :
\(\left|2x+3\right|+\left|2x-1\right|=\frac{8}{2\left(y-5\right)^2+2}\)
Tìm cặp số nguyên x,y thỏa mãn :
\(\left|2x+3\right|+\left|2x-1\right|=\frac{8}{2\left(y-5\right)^2+2}\)
\(\left\{{}\begin{matrix}\left(m+2\right)x+3y=4m-1\\2x-y=3\end{matrix}\right.\)
Tìm m để hệ có nghiệm duy nhất (x,y) thỏa mãn `y^2 -3x^2 +8x` đạt Min
Tìm tất cả các cặp (x,y) nguyên thỏa mãn
\(\left(x^2-x+1\right)\left(y^2+xy\right)=3x-1\)
\(\left(x^2-x+1\right)\left(xy+y^2\right)=3x-1\left(1\right)\)
\(3x-1⋮x^2-x+1\)
zì \(lim\left(x\rightarrow\infty\right)\frac{3x-1}{x^2-x+1}=0\)
zà thấy x=2 thỏa mãn ,=> x=1
thay zô 1 ta có
\(1\left(y+y^2\right)=2=>y^2+y-2=0=>\orbr{\begin{cases}y=1\\y=-2\end{cases}}\)
zậy \(\left(x,y\right)\in\left\{\left(1,1\right)\left(1,-2\right)\right\}\)
Phân tích các biểu thức sau thành tích:
a) \(y^2\left(x^2+y\right)-x^2z-yz\)
b) \(\left(2x^2+1\right)\left(3x-2\right)+\left(x-2\right)\left(2-3x\right)+2-3x\)
c) \(\left(x^2-x+2\right)\left(x-1\right)-x^2\left(1-x\right)^2-\left(2x+1\right)\left(1-x\right)^3\)
Tìm x thỏa mãn điều kiện:
a) \(5x^2\left(2x-3\right)+\left(2x^2+3x+3\right)\left(3-2x\right)=6x^3-9x^2\)
b) \(\left(4x^2+2x\right)\left(x^2-x\right)+\left(4x^2+6\right)\left(x-x^2\right)=0\)
c) Phân tích đa thức: \(x^{m+3}y^2-3x^3y^{m+5}\)thành nhân tử
tập nghiệm của bất pt
a) \(\left|4x-8\right|\le8\)
b) \(\left|x-5\right|\le4\). (số nghiệm nguyên|)
c) \(\left|2x+1\right|< 3x\) ( giá trị nguyên x thỏa mãn [-2017;2017]
d) \(\left|x+1\right|+\left|x\right|< 3\)
e) \(\left|2-x\right|+3x-1\le6\)
a, \(\left|4x-8\right|\le8\)
\(\Leftrightarrow\left(\left|4x-8\right|\right)^2\le64\)
\(\Leftrightarrow16x^2-64x+64\le64\)
\(\Leftrightarrow16x^2-64x\le0\)
\(\Leftrightarrow16x\left(x-4\right)\le0\)
\(\Leftrightarrow0\le x\le4\)
b, \(\left|x-5\right|\le4\)
\(\Leftrightarrow\left(\left|x-5\right|\right)^2\le16\)
\(\Leftrightarrow x^2-10x+25\le16\)
\(\Leftrightarrow x^2-10x+9\le0\)
\(\Leftrightarrow1\le x\le9\)
\(\Rightarrow x\in\left\{1;2;3;4;5;6;7;8;9\right\}\)
c, \(\left|2x+1\right|< 3x\)
TH1: \(x\ge-\dfrac{1}{2}\)
\(\left|2x+1\right|< 3x\)
\(\Leftrightarrow2x+1< 3x\)
\(\Leftrightarrow x>1\)
\(\Rightarrow\left\{{}\begin{matrix}x\in Z\\x\in\left(1;2018\right)\end{matrix}\right.\)
TH2: \(x< -\dfrac{1}{2}\)
\(\left|2x+1\right|< 3x\)
\(\Leftrightarrow-2x-1< 3x\)
\(\Leftrightarrow x>-\dfrac{1}{5}\left(l\right)\)
Vậy \(\left\{{}\begin{matrix}x\in Z\\x\in\left(1;2018\right)\end{matrix}\right.\)
d, \(\left|x+1\right|+\left|x\right|< 3\)
\(\Leftrightarrow x+1+x+2\left|x^2+x\right|< 9\)
\(\Leftrightarrow\left|x^2+x\right|< 4-x\)
Xét hai trường hợp để phá dấu giá trị tuyệt đối
e, Tương tự câu d
Tìm cặp số (x,y) nguyên thỏa mãn :
\(\left(x^2-x+1\right)\left(y^2+xy\right)=3x-1\)
Ta có :
\(\left(x^2-x+1\right)\left(y^2+xy\right)=3x+1\left(∗\right)\Rightarrow x^2-x+1|3x+1\Rightarrow x^2-x+1\le\left|3x-1\right|\)
TH1 :
\(x\ge\frac{1}{3}\Leftrightarrow x^2-x+1\le3x-1\Leftrightarrow x^2-4x+2\le0\Leftrightarrow2-\sqrt{2}\le x\le2+\sqrt{2}\left(tm\right)\)
Mà \(x\in Z\Rightarrow x\in\left\{1;2;3\right\}\)
TH2 :
\(x\le\frac{1}{3}\Leftrightarrow x^2-x+1\le-3x+1\Leftrightarrow x^2+2x\le0\Leftrightarrow-2\le x\le0\left(tm\right)\)
Mà \(x\in Z\Rightarrow x\in\left\{-2;-1;0\right\}\)
\(\Rightarrow x\in\left\{-2;-1;0;1;2;3\right\}\)
+) \(\forall x=−1⇒\left(∗\right)⇔3(y^2-y)=−4⇔y^2−y=−\frac{4}{3}\left(vn\right)\)
+) \(\forall x=0⇒\left(∗\right)⇔y^2=−1\left(vn\right)\)
+) \(\forall x=1\Rightarrow\left(∗\right)\Leftrightarrow y^2+y=2\Leftrightarrow\orbr{\begin{cases}y=1\\y=-2\end{cases}\left(tm\right)}\)
Với x = 2 ; x = 3 ... ( vn ) ( Làm tương tự như trên:v )
Vậy các nghiệm nguyên của pt đã cho là \(\left(x;y\right)=\left\{\left(-2;1\right);\left(1;1\right);\left(1;-2\right)\right\}\)
@LetHateHim : Đề bài là 3x- 1 mà bạn