Những câu hỏi liên quan
Thu Trần Thị
Xem chi tiết
Nguyen Duy Dai
Xem chi tiết
HD Film
14 tháng 8 2020 lúc 18:15

\(P=\frac{\sqrt{1+x^2+y^2}}{xy}+\frac{\sqrt{1+y^2+z^2}}{yz}+\frac{\sqrt{1+z^2+x^2}}{zx}\)

\(\ge\text{Σ}\frac{\sqrt{\frac{\left(1+x+y\right)^2}{3}}}{xy}\text{=}\frac{1+x+y}{xy\sqrt{3}}\)

\(=\frac{\sqrt{3}}{3}\left(\frac{1+x+y}{xy}+\frac{1+y+z}{yz}+\frac{1+z+x}{zx}\right)\)

\(=\frac{\sqrt{3}}{3}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}+\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}+\frac{1}{x}\right)\)

\(=\frac{\sqrt{3}}{3}\left(x+y+z+2xy+2yz+2zx\right)\)\(\ge\frac{\sqrt{3}}{3}\left(3\sqrt[3]{xyz}+2\cdot3\sqrt[3]{x^2y^2z^2}\right)=\frac{\sqrt{3}}{3}\left(3+6\right)=3\sqrt{3}\)

Dấu = xảy ra khi \(x=y=z=1\)

Khách vãng lai đã xóa
Trần Thành Phát Nguyễn
Xem chi tiết
Thắng Nguyễn
12 tháng 10 2016 lúc 17:10

mk hơi vội nên sai 1 số lỗi nhỏ bn tự sửa nhé

Thắng Nguyễn
12 tháng 10 2016 lúc 17:08

\(A=\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\)

Áp dụng Bđt MIncopxki ta có:

\(A\ge\sqrt{\left(x+y+\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)}\)

\(\ge\sqrt{\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}}\)

\(\ge\sqrt{\left(x+y+z\right)^2+\frac{1}{\left(x+y+z\right)^2}+\frac{80}{\left(x+y+z\right)^2}}\)

\(\ge\sqrt{2+80}=\sqrt{82}\)

Dấu = khi \(x=y=z=\frac{1}{3}\)

Trần Thành Phát Nguyễn
13 tháng 10 2016 lúc 20:33

vì sao từ \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\) mà ra được \(\frac{81}{\left(x+y+z\right)^2}\)

Đinh Thị Ngọc Anh
Xem chi tiết
Lan Ninh
1 tháng 5 2018 lúc 14:47

bạn vào trang này nhé có bài như thến này đấy 

//123doc.org//document/3173507-ren-luyen-chuyen-de-tim-maxmin-on-thi-thpt-quoc-gia.htm

hồ sỹ tú
20 tháng 5 2020 lúc 13:34

tính diện tích hình vẽ dưới đây

42.4 cm 25.7 cm 30cm 48.4cm 23m 31.6m

Khách vãng lai đã xóa
Phan Thanh Tịnh
Xem chi tiết
Baek Hyun
Xem chi tiết
Trần Phúc Khang
30 tháng 5 2019 lúc 6:47

Ta có \(\frac{y}{x\sqrt{y^2+1}}=\frac{y\sqrt{xz}}{x\sqrt{y\left(x+y+z\right)+xz}}=\frac{yz}{\sqrt{x\left(y+z\right).z\left(x+y\right)}}\ge\frac{2yz}{2xz+xy+yz}\)

Đặt \(a=xy,b=yz,c=xz\)=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)

Khi đó

\(P\ge\frac{2b}{2c+a+b}+\frac{2c}{2a+b+c}+\frac{2a}{2b+a+c}\ge\frac{2\left(a+b+c\right)^2}{b^2+c^2+a^2+3\left(ab+bc+ac\right)}\)

Xét \(P\ge\frac{3}{2}\)

=> \(4\left(a+b+c\right)^2\ge3\left(a^2+b^2+c^2\right)+9\left(ab+bc+ac\right)\)

<=> \(a^2+b^2+c^2\ge\left(ab+bc+ac\right)\)(luôn đúng )

Vậy \(MinP=\frac{3}{2}\)khi a=b=c=3=> \(x=y=z=\sqrt{3}\)

Anna Vũ
Xem chi tiết
ABC
Xem chi tiết
zZz Cool Kid_new zZz
8 tháng 1 2020 lúc 18:41

Câu hỏi của Trần Thành Phát Nguyễn - Toán lớp 9 - Học toán với OnlineMath

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
8 tháng 1 2020 lúc 20:16

\(\sqrt{x^2+\frac{1}{x^2}}=\sqrt{\frac{9}{10}}\cdot\sqrt{\left(x^2+\frac{1}{x^2}\right)\left(\frac{1}{9}+1\right)}\ge\sqrt{\frac{9}{10}}\cdot\left(\frac{x}{3}+\frac{1}{x}\right)\)

Tương tự:\(\sqrt{y^2+\frac{1}{y^2}}\ge\sqrt{\frac{9}{10}}\left(\frac{y}{3}+\frac{1}{y}\right);\sqrt{z^2+\frac{1}{z^2}}\ge\sqrt{\frac{9}{10}}\left(\frac{z}{3}+\frac{1}{z}\right)\)

Cộng lại ta có:

\(LHS\ge\sqrt{\frac{9}{10}}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{x+y+z}{3}\right)\ge\sqrt{\frac{9}{10}}\left(\frac{9}{x+y+z}+\frac{x+y+z}{3}\right)\)

\(=\sqrt{\frac{9}{10}}\cdot\left(\frac{x+y+z}{3}+\frac{1}{3\left(x+y+z\right)}+\frac{26}{3\left(x+y+z\right)}\right)\)

ai đó giúp em đoạn này với.Em cô si xong thấy không đúng ạ :(

Khách vãng lai đã xóa
Phan Nghĩa
5 tháng 9 2020 lúc 21:04

Ta sẽ chứng minh bất đẳng thức sau : với các số dương a,b,c,d , ta có : 

\(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\) (*)

\(< =>a^2+b^2+c^2+d^2+2.\sqrt{a^2+b^2}.\sqrt{c^2+d^2}\ge a^2+b^2+c^2+d^2+2ac+2bd\)

\(< =>2.\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge2\left(ac+bd\right)\)\(< =>\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge ac+bd\)

\(< =>a^2c^2+b^2c^2+a^2d^2+b^2d^2\ge a^2c^2+b^2d^2+2abcd\)

\(< =>VT-VP=\left(ad-bc\right)^2\ge0\left(đpcm\right)\)

Sử dụng liên tiếp bất đẳng thức (*) , ta có : \(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge\sqrt{\left(x+y\right)^2+\left(\frac{1}{x}+\frac{1}{y}\right)}^2+\sqrt{z^2+\frac{1}{z^2}}\)

\(\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)(+)

Tiếp tuc ta sẽ chứng minh bất đẳng thức sau : với các số dương a,b,c  :

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)(**)

Sử dụng bất đẳng thức AM-GM : \(a+b+c\ge3\sqrt[3]{abc};\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

Nhân theo vế \(< =>\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\left(đpcm\right)\)

Ta có bất đẳng thức (**) đúng nên suy ra được \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)(***)

Bất đẳng thức (***) tương đương với \(\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\ge\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}\)

Mà theo đánh giá của AM-GM thì \(\left(x+y+z\right)^2+\frac{1}{\left(x+y+z\right)^2}\ge2\sqrt{\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}}=2\)(****)

Vfa theo giả thiết \(x+y+z\le1< =>\frac{1}{x+y+z}\ge1< =>\frac{80}{\left(x+y+z\right)^2}\ge80\)(*****)

Cộng theo vế hai bất đẳng thức (****) và (*****) ta được : \(\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}\ge2+80=82\) 

Khi đó \(\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\ge\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}\ge82\)(++)

Từ (+) và (++) ta suy ra được : \(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\ge\sqrt{82}\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=z=\frac{1}{3}\)

Vậy bài toán đã được hoàn tất chứng minh ! 

Khách vãng lai đã xóa
Nguyễn Tuấn Hào
Xem chi tiết
Nguyễn Ngọc Giao
8 tháng 5 2021 lúc 9:56

SEIFWJNHGRHFQ24FTW

Khách vãng lai đã xóa