Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Thị Thanh Hà
Xem chi tiết
✓ ℍɠŞ_ŦƦùM $₦G ✓
13 tháng 2 2016 lúc 18:06

n2+n+6=n(n+1)+6 

n(n+1) không có tận cùng=4;9=>n(n+1)+6 không chia hết cho 5

=>n2+6 không chia hết cho 5

=>đpcm

Hoang Thi Thu Giang
Xem chi tiết
Hoang Thi Thu Giang
16 tháng 11 2016 lúc 19:29

Mấy bạn làm hộ mình nha , bài khó quá không biết làm thế nào nữa.Xin trân thành cảm ơn nếu các bạn làm chi tiết.

Đồng Hồ Cát 3779
Xem chi tiết
Nhật Minh
22 tháng 6 2016 lúc 20:01

1)  \(55^{n+1}-55^n=55^n\left(55-1\right)=55^n.54⋮54\)

Nhật Minh
22 tháng 6 2016 lúc 20:04

2) A= \(n^2\left(n+1\right)+2n\left(n+1\right)=n\left(n+1\right)\left(n+2\right)\)

A là tích 3 số TN liên tiep => A\(⋮\)2; A\(⋮\)3

=> A\(⋮\)2.3

A\(⋮\)6

Hải Annh
22 tháng 6 2016 lúc 20:34

Toán lớp 8

Super Saiyan God
Xem chi tiết
Nguyễn Anh Quân
1 tháng 12 2017 lúc 22:03

Nhận xét : số chính phương chia 5 dư 0 hoặc 1 hoặc 4

Nếu n^2 chia hết cho 5 => n chia hết cho 5 ( vì 5 là số nguyên tố )

=> n.(n^2+1).(n^2+4) chia hết cho 5

Nếu n^2 chia 5 dư 1 => n^2+4 chia hết cho 5 

=> n.(n^2+1).(n^2+4) chia hết cho 5

Nếu n^2 chia 5 dư 4 => n^2+1 chia hết cho 5

=> n.(n^2+1).(n^2+4) chia hết cho 5

Vậy n.(n^2+1).(n^2+4) chia hết cho 5

k mk nha

Nguyễn Minh Hiếu
Xem chi tiết
Đinh Trà My
Xem chi tiết
Nguyễn Phương Hiền Thảo
16 tháng 1 2016 lúc 20:14

hình như câu 2 Nguyễn Hoài Linh copy

Đây là toán nâng cao chuyên đề tính chất chia hết của một tổng, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau: 

                             Giải

Chứng minh bằng phương pháp phản chứng:

Giả sử A ⋮ 121 ∀ n khi đó ta có với n = k( k \(\in\)n) thì: 

A = k2 + 3k + 5 ⋮ 121 (luôn đúng \(\forall\) k \(\in\) N)

Với n = k + 1 thì

A = (k + 1)2 + 3(k + 1) + 5 ⋮ 121 (luôn đúng \(\forall\) k \(\in\) N) 

⇒ (k + 1).(k + 1) + 3k + 3 + 5⋮ 121

⇒ k2 + k + k + 1 + 3k + 3 + 5 ⋮ 121

⇒ (k2 + 3k + 5) + (k + k) + (1 + 3)⋮ 121

⇒ (k2 + 3k + 5) + 2k + 4 ⋮ 121

⇒ 2k + 4 ⋮ 121

⇒ 2.(k + 2) ⋮ 121

⇒ k + 2 ⋮ 121 (1)

Mà ta có: k2 + 3k + 5 ⋮ 121

               ⇒ k(k + 2) + (k + 2) + 3 ⋮ 121

              ⇒ (k + 2)(k + 1) + 3 ⋮ 121 (2)

Kết hợp (1) và (2) ta có: 3 ⋮ 121 (vô lý)

Vậy điều giả sử là sai hay 

A = n2 + 3n + 5 không chia hết cho 121 với mọi n (đpcm)

 

             

 

     

 

Minh Lê
Xem chi tiết
Lê Tâm Thư
Xem chi tiết
Nguyễn Anh Quân
30 tháng 12 2017 lúc 20:50

Nhận xét : số chính phương chia 5 dư 0;1;4

Đặt A = n.(n^2+1).(n^2+4)

Nếu n^2 chia hết cho 5 thì n chia hết cho 5 (vì 5 nguyên tố) => A chia hết cho 5

Nếu n^2 chia 5 dư 1 => n^2+4 chia hết cho 5 => A chia hết cho 5

Nếu n^2 chia 5 dư 4 => n^2+1 chia hết cho 5 => A chia hết cho 5

=> đpcm

k mk nha

TRAN THI KIM NGAN
30 tháng 12 2017 lúc 20:53

(n^2+1).(n^2+4)

=n^2.(1+4)

=n^2.5

Vì5 chia hết cho 5 nên n^2.5 chia hết cho 5

Hay(n^2+1).(n^2+4) chia hết cho 5(đpcm)

Lê Tâm Thư
30 tháng 12 2017 lúc 20:58

thank you very much

Tran Anh Tuan
Xem chi tiết