TÌM NGHIỆM NGUYÊN DƯƠNG CỦA PHƯƠNG TRÌNH
\(X^2+3XY+Y^2=X^2Y^2\)
CẦN GẤP AI GIÚP NHANH HỘ VỚI
tìm các nghiệm nguyên dương của các phương trình
a/x^+xy+y^2
b/x^2+xy+y^2=x+y
c/x^2-3xy+2y^2=3y
d/x^2-2xy+5y^2=y+1
tìm nghiệm nguyên dương của phương trình :\(x^2+2y^2-3xy+2x-4y+3=0\)
Bài 1 : tìm x ; y nguyên dương
2xy + x + y = 83
Bài 2 tìm nghiệm nguyên của phương trình :
a ) x2 + 2y2 + 3xy - x - y + 3 = 0
b ) 6x2y3 + 3x2 - 10y3 = -2
GIÚP EM VỚI Ạ,EM CẦN GẤP Ạ
1)Cho phương trình 3x+2y=7.
Tìm nghiệm tổng quát của phương trình,tìm nghiệm nguyên của phương trình
2)Cho hệ phương trình: mx+y=1
4x+5y=3
Giải hệ phương trình với m= -2 bằng 2 cách (phương pháp thế,phương pháp cộng đại số)
Bài 1:
3x+2y=7
\(\Leftrightarrow3x=7-2y\)
\(\Leftrightarrow x=\dfrac{7-2y}{3}\)
Vậy: \(\left\{{}\begin{matrix}y\in R\\x=\dfrac{7-2y}{3}\end{matrix}\right.\)
tìm nghiệm nguyên dương của phương trình
2(x+y)+16=3xy
Câu hỏi của Tiểu thư họ Vũ - Toán lớp 9 - Học toán với OnlineMath
a) Giải phương trình nghiệm nguyên \(2xy^2+x+y+1=x^2+2y^2+xy\)
b) tìm các số nguyên dương x;y sao cho \(\frac{x^3+x}{3xy-1}\)là một số nguyên
a) \(2xy^2+x+y+1=x^2+2y^2+xy\)
\(\Leftrightarrow2xy^2+x+y-x^2-2y^2-xy=-1\)
\(\Leftrightarrow2xy^2-2y^2+x-x^2+y-xy=-1\)
\(\Leftrightarrow2y^2\left(x-1\right)-x\left(x-1\right)-y\left(x-1\right)=-1\)
\(\Leftrightarrow\left(x-1\right)\left(2y^2-x-y\right)=-1\)
Để x nguyên thì x - 1 nguyên. Vậy thì \(x-1\in\left\{-1;1\right\}\)
Với x = 1, ta có \(2y^2-1-y=-1\Rightarrow2y^2-y=0\Rightarrow\orbr{\begin{cases}y=0\left(n\right)\\y=\frac{1}{2}\left(l\right)\end{cases}}\)
Với x = -1, ta có \(2y^2+1-y=1\Rightarrow2y^2+y=0\Rightarrow\orbr{\begin{cases}y=0\left(n\right)\\y=\frac{-1}{2}\left(l\right)\end{cases}}\)
Vậy phương trình có nghiệm (x; y) = (1; 0) hoặc (-1; 0).
Tìm nghiệm nguyên dương x,y,z của phương trình x+y+z -1 = xyz
Ai làm đúng mình tick cho, nhanh rep nhá, đang cần gấp lắm
x+y+z=xyz+1
Giả sử x lớn hơn =y lớn hơn =z
=> 3x> xyz+1 >xyz
=> 3> yz
do y,z nguyên dương nnee tìm đc y,z
giải phương trình nghiệm nguyên:
a,\(xy=x^2y^2-x^2-y^2\)
b,\(3xy=\left(x+y\right)^2-2\left(x+y\right)\)
c,\(2x^2+y^2+3xy+3x+2y+2=0\)
d, \(x^2+13y^2=6xy+100\)
ai đúng mik tik cho
mik đang cần gấp
thank you for everything
1. Tìm các nghiệm nguyên dương của phương trình: 3(xy+yz+zx) = 4xyz
2. Xác định tất cả các cặp (x;y) nguyên dương thỏa mãn phương trình: (x+1)^4 - (x-1)^4 = y^3
3. Tìm nghiệm nguyên dương của phương trình: x^2y + y^2z + z^2x = 3xyz
P/s: Tôi có bài giải rồi, ai có ý kiến khác tôi thì ý kiến nhé
Tui vừa trả lời 3 bài này ở câu của Nguyễn Anh Quân
Xem tui giải đúng không nha
Xin Wrecking Ball nhận xét
1...Chia cả hai vế cho xyz ta được
3xy/xyz + 3yz/xyz + 3zx/xyz = 4xyz/xyz
<=>3/x + 3/y + 3/z = 4
<=>1/x + 1/y + 1/z = 4/3
Vì x,y,z bình đẳng nên giả sử 0<x<=y<=z
+nếu x>=4=> y>=4;z>=4
=> 1/x + 1/y + 1/z <= 1/4 + 1/4 + 1/4 =3/4 < 4/3 => pt vô nghiệm
+nếu x=1 => 1+1/y+1/z=4/3
<=> 1/y+1/z=1/3
<=> 3(y+z)=yz
<=> 3y+3z-yz=0
<=> 3y-yz+3z-9=-9
<=> y(3-z)-3(3-z)=-9
<=> (3-z)(3-y)=9
Vì y,z nguyên dương nên (3-y),(3-z) nguyên dương
mà 9=3*3=1*9=9*1
==>3-z=3 và 3-y=3 => z=0 và y=0 (loại vì y,z nguyên dương)
+nếu x=2 => 1/2+1/y+1/z=4/3
<=> 1/y+1/z=5/6
<=> 6(y+z)=5yz
<=> 6y+6z-5yz=0
<=> 30y-25yz+30z-36=-36
<=> 5y(6-5z)-6(6-5z)=-36
<=> (5z-6)(5y-6)=36
Vì y,z nguyên dương nên (5y-6),(5z-6) nguyên dương
mà 36=6*6=2*18=18*2=3*12=12*3=4*9=9*4
Giải tương tự phần trên ta được
y=2,z=3 hoặc y=3,z=2
+nếu x=3 => 1/3+1/y+1/z=4/3
<=> 1/y+1/z=1
Giải tương tự phần trên ta được y=z=2
Vậy (x;y;z)=(2;2;3);(2;3;2);(3;2;2)
MK cop nhưng ủng hộ mk nha , mk có lòng trả lời