Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
roronoa zoro
Xem chi tiết
zZz Cool Kid_new zZz
18 tháng 12 2019 lúc 20:47

Biết trước điểm rơi rồi thì quá EZ.

\(P=x+y+z+\frac{3}{x}+\frac{9}{2y}+\frac{4}{z}\)

\(=\left(\frac{3}{a}+\frac{3a}{4}\right)+\left(\frac{9}{2b}+\frac{b}{2}\right)+\left(\frac{4}{c}+\frac{c}{4}\right)+\left(\frac{a}{4}+\frac{b}{2}+\frac{3c}{4}\right)\)

\(\ge2\sqrt{\frac{3}{a}\cdot\frac{3a}{4}}+2\sqrt{\frac{9}{2b}\cdot\frac{b}{2}}+2\sqrt{\frac{4}{c}\cdot\frac{c}{4}}+\frac{a+2b+3c}{4}\)

\(\ge13\)

Dấu "=" xảy ra tại a=2;b=3;c=4

Khách vãng lai đã xóa
Hải Anh
Xem chi tiết
Hoàng Nguyễn Văn
18 tháng 2 2020 lúc 10:56

\(B=\frac{x^2-20}{x^2+5}=1-\frac{25}{x^2+5}\)

Ta có: \(x^2+5\ge5>0\Rightarrow\frac{25}{x^2+5}\le\frac{25}{5}=5\Rightarrow B\ge1-5=-4\)

Dấu = xảy ra <=> x^2=0 <=> x=0

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 6 2019 lúc 10:08

25m + 8m = 33m

38m – 15m = 23m

17m + 33m = 50m

85m – 53m = 32m

Mai Thành Đạt
Xem chi tiết
Hoàng Lê Bảo Ngọc
17 tháng 7 2016 lúc 10:04

Ta có : \(B=\frac{14x^2-8x+9}{3x^2+6x+9}=\frac{2\left(x^2+2x+3\right)+\left(12x^2-12x+3\right)}{3\left(x^2+2x+3\right)}\)

\(=\frac{12\left(x-\frac{1}{2}\right)^2}{3\left(x^2+2x+3\right)}+\frac{2}{3}\ge\frac{2}{3}\) . Dấu "=" xảy ra khi x = 1/2

Vậy Min B = 2/3 khi x = 1/2

Lê Thanh Thưởng
Xem chi tiết
trinh quang huy
Xem chi tiết
Me
26 tháng 11 2019 lúc 22:03

                                                        Bài giải

\(A=\frac{x^2-9}{x^2+1}=\frac{x^2+1-10}{x^2+1}=1-\frac{10}{x^2+1}\)

* A đạt GTNN khi \(\frac{10}{x^2+1}\) đạt GTLN

\(\Rightarrow\text{ }x^2+1\) đạt GT là số nguyên dương nhỏ nhất

\(\Rightarrow\text{ }x^2+1=1\)\(\Leftrightarrow\text{ }x^2=0\text{ }\Leftrightarrow\text{ }x=0\)

\(\Rightarrow\text{ }\frac{10}{x^2+1}\le10\)

\(\Rightarrow\text{ }A=1-\frac{10}{x^2+1}\le1-10=-9\)

\(\Rightarrow\text{ }Min\text{ A = 9}\)

\(A\) đạt GTLN khi \(\frac{10}{x^2+1}\) đạt GTNN

\(\Rightarrow\text{ }x^2+1\) đạt GTLN

\(\Rightarrow\) Không thể tính được

Khách vãng lai đã xóa
Me
26 tháng 11 2019 lúc 22:03

Đề của bạn không tìm được GTLN nha !

Khách vãng lai đã xóa
Kiệt Nguyễn
27 tháng 11 2019 lúc 12:06

\(A=\frac{x^2-9}{x^2+1}=\frac{x^2+1-10}{x^2+1}=1-\frac{10}{x^2+1}\)

Ta có: \(x^2\ge0\)

\(\Rightarrow x^2+1\ge1\)

\(\Rightarrow\frac{10}{x^2+1}\le10\)

\(\Rightarrow-\frac{10}{x^2+1}\ge-10\)

\(\Rightarrow1-\frac{10}{x^2+1}\ge-9\)

Vậy \(A_{min}=-9\Leftrightarrow x^2=0\Leftrightarrow x=0\)

Khách vãng lai đã xóa
Nguyễn Đức Tài
Xem chi tiết
ßσss™|๖ۣۜHắc-chan|
Xem chi tiết
Krissy
6 tháng 3 2019 lúc 21:30

\(A=\left(x-\frac{2}{5}\right)^2+\left(y+20\right)^{10}-2019\)

Ta có:

\(\left(x-\frac{2}{5}\right)^2\ge0\)    (Vì có mũ là số chẵn)

\(\left(y+10\right)^{10}\ge0\)    (Vì có mũ là số chẵn)

=> Để A đạt GTNN:

\(\left(x-\frac{2}{5}\right)^2+\left(y+20\right)^{10}-2019\)\(=0+0-2019=-2019\)

Vậy GTNN của A là -2019 khi \(x=\frac{2}{5};y=-20\).

T**k mik nhé!

ßσss™|๖ۣۜHắc-chan|
7 tháng 3 2019 lúc 20:01

\(\frac{ }{\hept{\begin{cases}\\\end{cases}}\hept{\begin{cases}\\\\\end{cases}}\orbr{\begin{cases}\\\end{cases}}^{ }\frac{ }{ }\sqrt[]{}\sqrt{ }\widehat{ }^{ }_{ }^2_{ }\underrightarrow{ }\cos\in}\)

Kết Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 3 2023 lúc 13:19

\(\Delta'=\left(m-1\right)^2+m+3=m^2-m+4=\left(m-\dfrac{1}{2}\right)^2+\dfrac{7}{2}>0;\forall m\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-m-3\end{matrix}\right.\)

a.

\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=4\left(m-1\right)^2+2\left(m+3\right)=4m^2-6m+10\)

\(=4\left(m-\dfrac{3}{4}\right)^2+\dfrac{31}{4}\ge\dfrac{3}{4}\)

Dấu = xảy ra khi \(m=\dfrac{3}{4}\)

b.

\(x_1^2+x_2^2=8m^3-8m^2\)

\(\Leftrightarrow4m^2-6m+10=8m^3-8m^2\)

\(\Leftrightarrow8m^3-12m^2+6m-1=9\)

\(\Leftrightarrow\left(2m-1\right)^3=9\)

\(\Leftrightarrow2m-1=\sqrt[3]{9}\)

\(\Rightarrow m=\dfrac{1+\sqrt[3]{9}}{2}\)

Nguyễn Lê Phước Thịnh
12 tháng 3 2023 lúc 13:13

a: Δ=(2m-2)^2-4(-m-3)

=4m^2-8m+4+4m+12

=4m^2-4m+16

=4m^2-4m+1+15=(2m-1)^2+15>0

=>Phương trình luôn có 2 nghiệm pb

A=x1^2+x2^2

=(x1+x2)^2-2x1x2

=(2m-2)^2-2(-m-3)

=4m^2-8m+4+2m+6

=4m^2-6m+10

=4(m^2-3/2m+5/2)

=4(m^2-2*m*3/4+9/16+31/16)

=4(m-3/4)^2+31/4>=31/4

Dấu = xảy ra khi m=3/4

b: x1^2+x2^=8m^3-8m^2

=>4m^2-6m+10=8m^3-8m^2

=>8m^3-8m^2-4m^2+6m-10=0

=>8m^3-12m^2+6m-10=0

=>\(m\simeq1,54\)