tìm x,y,z nguyên dương tm x^3 + 5 = 5^y - 3x^2 và x + 3 = 5^2
Tìm x , y ,z nguyên dương : x^3 + 3x^2 + 5 = 5^9 và x+3 = 5^2
Bạn kiểm tra lại đề bài nhé!
\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)
Tìm các số x, y, z nguyên dương thỏa mãn: x3+ 3x2+ 5= 5y và x+ 3= 5z.
Câu hỏi của Nguyen Thao An - Toán lớp 7 - Học toán với OnlineMath
Tìm các số x,y,z nguyên dương thỏa mãn: x3+3x2+5= 5y và x+3=5z
Vì x dương nên \(x^3+3x^2+5>x+3\)
hay \(5^y>5^z\Rightarrow5^y⋮5^z\)
\(\Rightarrow x^3+3x^2+5⋮x+3\)
\(\Rightarrow x^2\left(x+3\right)+5⋮x+3\)
Vì \(x^2\left(x+3\right)⋮x+3\)nên \(5⋮x+3\)
\(\Rightarrow x+3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Mà x + 3 > 3 ( do x dương ) nên x + 3 = 5 \(\Rightarrow x=2\)
\(\Rightarrow5^z=2+3=5\Leftrightarrow z=1\)
và \(5^y=8+12+5=25\Rightarrow y=2\)
Vậy x = 2; y = 2; z = 1
tìm các số nguyên dương x,y,z thỏa mãn x3 + 3x2 +5 = 5y và x+3=5z
\(x^3+3x^2+5=5^y\)
\(x^2.\left(x+3\right)+5=5^y\)
vì \(x+3=5z\)
\(x^2.5z+5=5^y\)
\(x^2.5.\left(z+1\right)=5^y\)
vì x,y,z thuộc Z khác 0
=>...
đến đây tịt r :((
Câu hỏi của Nguyen Thao An - Toán lớp 7 - Học toán với OnlineMath
a) Tìm các giá trị nguyên dương của x và y, sao cho : 1/x +1/y = 1/5
b) Tìm a, b, c Nguyên dương TM : a3 +3a2 +5 = 5b và a+3=5c
C).(0,5 diem) 5 các số nguyên dương x, y, z thỏa tìm tất cả các số nguyên dương thỏa manc mãn: (2z - 4x)/3 = (3x - 2y)/4 = (4y - 3z)/2 và 200 < y ^ 2 + z ^ 2 < 450
B1 : Giai pt nghiệm nguyên :
a, y^3=x^3+2x^2+1 và xy=z^2+2
b, x^3-y^3-z^3=3xyz và x^2 = 2.(y+z) ( x,y,z nguyên dương )
c,x^3+y^3=3xy+3
d,x^4-x^2+2x+2=y^2
B2:a, Tìm các số nguyên dương tm : \(\frac{x-y.\sqrt{2011}}{y-z.\sqrt{2011}}\)là số hữu tỉ và x^2+y^2+z^2 là các sô nguyên tố
b, Tìm các số tự nhiên x,y : 2^x + 57 = y^2
Ai làm nhanh và đúng nhất mk sẽ cho 3 tick
Hạn ngày 17/11/2017
tìm x, y, z biết
a) 3x =7y và x - y = -16
b) x/6 = y/5 và x + 2y = 20
c) x/2 = y/-3 = z/5 và 2x + 3y + 5z =6
d) x/2 =y/3 , y/4 = z/5 và x + y -z =10
e) x/3 = y/4 = z/2 và x^3 - y^3 + z^3
a: 3x=7y
=>x/7=y/3=(x-y)/(7-3)=-16/4=-4
=>x=-28; y=-12
b: x/6=y/5
=>x/6=2y/10=(x+2y)/(6+10)=20/16=5/4
=>x=30/4=15/2; y=25/4
c: Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{2}=\dfrac{y}{-3}=\dfrac{z}{5}=\dfrac{2x+3y+5z}{2\cdot2+3\cdot\left(-3\right)+5\cdot5}=\dfrac{6}{20}=\dfrac{3}{10}\)
=>x=3/5; y=-9/10; z=3/2
d: x/2=y/3
=>x/8=y/12
y/4=z/5
=>y/12=z/15
=>x/8=y/12=z/15
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x+y-z}{8+12-15}=\dfrac{10}{5}=2\)
=>x=16; y=24; z=30