Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hiếu Nguyễn
Xem chi tiết
hoàng hà diệp
Xem chi tiết
Thanh Tùng DZ
28 tháng 4 2020 lúc 7:33

do vai trò a,b là như nhau nên không giảm tính tổng quát, giả sử \(a\le b\)

Nếu \(a\ge3\)thì \(b\ge a\ge3\)nên

\(\frac{ab+1}{a+b}\ge\frac{3b+1}{a+b}\ge\frac{3b+1}{2b}=\frac{3}{2}+\frac{1}{2b}>\frac{3}{2}\)( ko thỏa mãn điều kiện )

do đó a < 3 \(\Rightarrow\orbr{\begin{cases}a=1\\a=2\end{cases}}\)

+) nếu a = 1 thì \(P=\frac{a^3b^3+1}{a^3+b^3}=\frac{b^3+1}{b^3+1}=1\)

+) nếu a = 2 thì từ điều kiện ta có : \(\frac{2b+1}{2+b}< \frac{3}{2}\Rightarrow4b+2< 6+3b\Rightarrow b< 4\Rightarrow b\in\left\{1;2;3\right\}\)

b = 1 thì P = 1

b = 2 thì P = \(\frac{65}{16}\)

b = 3 thì P = \(\frac{217}{35}\)

Từ các giá trị trên của P ta thấy giá trị lớn nhất của P là \(\frac{217}{35}\) khi a = 2 ; b = 3 hoặc a = 3 ; b = 2

Khách vãng lai đã xóa
Lê An Bình
Xem chi tiết
Nguyễn Thị Quỳnh Như
18 tháng 4 2016 lúc 14:53

 Ta có : \(\sqrt{\frac{ab}{ab+2c}}=\sqrt{\frac{ab}{ab+\left(a+b+c\right)c}}=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}\right)\)

Đẳng thức xảy ra khi và chỉ khi \(\frac{a}{a+c}+\frac{b}{b+c}\)

Tương tự ta cũng có 

           \(\sqrt{\frac{bc}{bc+2a}}\le\frac{1}{2}\left(\frac{b}{b+a}+\frac{c}{c+a}\right);\sqrt{\frac{ca}{ca+2b}}\le\frac{1}{2}\left(\frac{c}{c+a}+\frac{a}{a+b}\right)\)

Cộng các vế ta được \(S\le\frac{1}{2}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{2}\)

Đẳng thức xảy ra khi và chỉ khi \(a=b=c=\frac{2}{3}\)

Vậy \(S_{max}=\frac{3}{2}\Leftrightarrow x=y=z=\frac{2}{3}\)

VN in my heart
Xem chi tiết
alibaba nguyễn
10 tháng 7 2017 lúc 13:54

Ta có:

\(\frac{1}{2a+3b+3c}=\frac{1}{\left(a+b\right)+\left(a+c\right)+\left(b+c\right)+\left(b+c\right)}\)

\(\le\frac{1}{16}.\left(\frac{1}{a+b}+\frac{1}{c+a}+\frac{2}{b+c}\right)\left(1\right)\)

Tương tự ta có: \(\hept{\begin{cases}\frac{1}{3a+2b+3c}\le\frac{1}{16}.\left(\frac{1}{b+c}+\frac{1}{a+b}+\frac{2}{c+a}\right)\left(2\right)\\\frac{1}{3a+3b+2c}\le\frac{1}{16}.\left(\frac{1}{c+a}+\frac{1}{b+c}+\frac{2}{a+b}\right)\left(3\right)\end{cases}}\)

Từ (1), (2), (3) \(\Rightarrow P\le\frac{1}{16}.\left(\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{c+a}\right)\)

\(=\frac{1}{4}.2017=\frac{2017}{4}\)

Nguyễn Thiều Công Thành
10 tháng 7 2017 lúc 14:08

đề thi vào lớp 10 năm nay của tỉnh thanh hóa

Đào Thị Hồng Ngọc
Xem chi tiết
zZz Cool Kid_new zZz
6 tháng 8 2020 lúc 19:53

Ta đi chứng minh: \(\frac{5b^3-a^3}{ab+3b^3}\le2b-a\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)

Một cách tương tự:\(\frac{5c^3-b^3}{bc+3c^3}\le2c-b;\frac{5a^3-c^3}{ca+3a^2}\le2a-c\)

Cộng lại thì:

\(LHS\le a+b+c=3\)

Đẳng thức xảy ra tại a=b=c=1

Khách vãng lai đã xóa
pham thi thu trang
Xem chi tiết
Tuyển Trần Thị
3 tháng 10 2017 lúc 20:49

ap dung bdt \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\) 

\(\frac{1}{2a+b+c}=\frac{1}{\left(a+b\right)+\left(a+c\right)}\le\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\)

\(\Rightarrow P\le\frac{1}{16}\left[\left(\frac{1}{a+b}+\frac{1}{a+c}\right)^2+\left(\frac{1}{a+b}+\frac{1}{b+c}\right)^2+\left(\frac{1}{b+c}+\frac{1}{a+c}^2\right)\right]\)

\(\Rightarrow16P\le\frac{2}{\left(a+b\right)^2}+\frac{2}{\left(b+c\right)^2}+\frac{2}{\left(a+c^2\right)}+\frac{2}{\left(a+b\right)\left(b+c\right)}+\frac{2}{\left(a+b\right)\left(a+c\right)}\)\(+\frac{2}{\left(b+c\right)\left(c+a\right)}\)

ap dung \(x^2+y^2+z^2\ge xy+yz+xz\) voi a+b=x, b+c=y, c+a=z

\(16P\le\frac{4}{\left(a+b\right)^2}+\frac{4}{\left(b+c\right)^2}+\frac{4}{\left(c+a\right)^2}\)

tiếp tục áp dụng bdt ban đầu \(\frac{4}{a+b}\le\frac{1}{a}+\frac{1}{b}\)

\(\Rightarrow\frac{1}{\left(a+b\right)^2}\le4.16.\left(\frac{1}{a}+\frac{1}{b}\right)^2\)

\(\Rightarrow16P\le\frac{1}{4}.16\left[\left(\frac{1}{a}+\frac{1}{b}\right)^2+\left(\frac{1}{b}+\frac{1}{c}\right)^2+\left(\frac{1}{c}+\frac{1}{a}\right)^2\right]\)

=\(\frac{1}{4}\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}\right)\)

tiep tuc ap dung bo de thu 2 ta co 

\(16P\le\frac{1}{4}.4\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=3\)

\(\Rightarrow p\le\frac{3}{16}\)dau =khi a=b=c=1

Phan Nghĩa
3 tháng 8 2020 lúc 21:02

Nguồn : mạng :V vào thống kê coi hìnholm.pn

Khách vãng lai đã xóa
Lê Tài Bảo Châu
Xem chi tiết
Kiệt Nguyễn
17 tháng 10 2020 lúc 7:07

Ta có: \(0< a^2+b^2+c^2=3\Rightarrow a^2,b^2,c^2< 3\Rightarrow a,b,c< \sqrt{3}< 2\)

Xét bất đẳng thức phụ: \(2a+\frac{1}{a}\ge\frac{1}{2}a^2+\frac{5}{2}\)(*)

Thật vậy: (*)\(\Leftrightarrow\frac{\left(a-1\right)^2\left(2-a\right)}{2a}\ge0\)*đúng*

Áp dụng, ta được: \(P\ge\frac{1}{2}\left(a^2+b^2+c^2\right)+\frac{5}{2}.3=9\)

Đẳng thức xảy ra khi a = b = c = 1

Khách vãng lai đã xóa
Nguyen Phuc Duy
Xem chi tiết
Kiệt Nguyễn
20 tháng 2 2021 lúc 10:51

Áp dụng bổ đề quen thuộc \(x^3+y^3\ge xy\left(x+y\right)\), ta được: \(\frac{1}{2a^3+b^3+c^3+2}=\frac{1}{\left(a^3+b^3\right)+\left(a^3+c^3\right)+2}\le\frac{1}{ab\left(a+b\right)+ac\left(a+c\right)+2}\)\(=\frac{bc}{ab^2c\left(a+b\right)+abc^2\left(a+c\right)+2bc}=\frac{bc}{b\left(a+b\right)+c\left(a+c\right)+2bc}\)\(\le\frac{bc}{ab+ac+4bc}=\frac{bc}{b\left(a+c\right)+c\left(a+b\right)+2bc}\)\(\le\frac{1}{9}\left(\frac{bc}{b\left(a+c\right)}+\frac{bc}{c\left(a+b\right)}+\frac{bc}{2bc}\right)=\frac{1}{9}\left(\frac{c}{a+c}+\frac{b}{a+b}+\frac{1}{2}\right)\)(1)

Tương tự, ta có: \(\frac{1}{a^3+2b^3+c^3+2}\le\frac{1}{9}\left(\frac{c}{b+c}+\frac{a}{a+b}+\frac{1}{2}\right)\)(2); \(\frac{1}{a^3+b^3+2c^3+2}\le\frac{1}{9}\left(\frac{b}{b+c}+\frac{a}{a+c}+\frac{1}{2}\right)\)(3)

Cộng theo vế ba bất đẳng thức (1), (2), (3), ta được: \(P\le\frac{1}{9}\left(1+1+1+\frac{3}{2}\right)=\frac{1}{2}\)

Vậy giá trị lớn nhất của P là \(\frac{1}{2}\)đạt được khi x = y = z = 1

Khách vãng lai đã xóa
dang ha
Xem chi tiết
Trí Tiên亗
16 tháng 2 2020 lúc 22:03

Em thử nha, rất là thích BĐT :33

Áp dụng BĐT Cô-si cho 2 số dương ta có :

\(Q=\frac{a+b}{ab}+\frac{ab}{a+b}=\left(\frac{a+b}{4ab}+\frac{ab}{a+b}\right)+\frac{3\left(a+b\right)}{4ab}\ge2\sqrt{\frac{a+b}{4ab}\cdot\frac{ab}{a+b}}+\frac{3\left(a+b\right)}{4ab}\)

                                                                                                                      \(\ge2\cdot\frac{1}{2}+\frac{3\cdot2}{\left(a+b\right)^2}=1+\frac{3}{2}=\frac{5}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=1\)

Vậy : min \(Q=\frac{5}{2}\) tại \(a=b=1\)

Khách vãng lai đã xóa