Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Anh không biết
Xem chi tiết
Nguyễn Anh Quân
3 tháng 12 2017 lúc 21:10

M = 12 - (3x^2+6x+3) = 12 - 3.(x+1)^2 <= 12

Dấu "=" xảy ra <=> x+1 = 0 <=> x = -1

Vậy GTLN của M = 12 <=> x  = -1

k mk nha

pham trung thanh
3 tháng 12 2017 lúc 21:10

\(M=-3x^2-6x+9\)

\(=\left(-3x^2-6x-3\right)+12\)

\(=12-3\left(x^2+2x+1\right)\)

\(=12-\left(x+1\right)^2\)

Do \(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow M\le12\)

Dấu = xảy ra khi \(\left(x+1\right)^2=0\)

                            \(\Rightarrow x+1=0\)

                             \(\Rightarrow x=-1\)

Vậy \(M_{Max}=12\Leftrightarrow x=-1\)

Anh không biết
4 tháng 12 2017 lúc 21:39

bạn Phạm Trung Thành thiếu 12-3(x+1)2

Phuong Thanh
Xem chi tiết
Lê Minh Anh
26 tháng 10 2014 lúc 11:01

A= x2-2x = ( x2-2x + 1 ) - 1 = -1 (x-1)2 . Vì (x-1)2 lớn hơn hoặc bằng 0 ==> Min A = 1. Khi x = 1 

B = -( x2- 4x + 4 +1) = -1-(x-2)2 < -1 ==> Max B = - 1 khi x = 2 

Phân tích đa thức x4 + 6x3+11x2+6x = x(x+1)(x+2)(x+3) thành nhân tử tích của 4 số tự nhiên liên tiếp chia hết cho 24

Tao La Hung
20 tháng 7 2016 lúc 15:23

cại đcm may

Ninh thuphuong
Xem chi tiết
alibaba nguyễn
8 tháng 11 2016 lúc 22:47

Ta có \(\frac{1}{3x-2\sqrt{6x}+5}=\frac{1}{\left(\left(\sqrt{3x}\right)^2-2.\sqrt{3x}.\sqrt{2}+2\right)+3}\)

\(=\frac{1}{\left(\sqrt{3x}-\sqrt{2}\right)^2+3}\le\frac{1}{3}\)

Vậy GTLN là \(\frac{1}{3}\)đạt được khi x = \(\frac{2}{3}\)

goku 2005
9 tháng 11 2016 lúc 5:05

x=2/3

Roxie
Xem chi tiết
Roxie
29 tháng 2 2020 lúc 15:23

Nguyễn Ngọc Lộc ?Amanda?Trần Quốc KhanhNguyễn Lê Phước ThịnhAkai HarumaPhạm Lan HươngHoàng Thị Ánh Phương Phạm Thị Diệu HuyềnVũ Minh TuấnTrên con đường thành công không có dấu chân của kẻ lười biếng

Khách vãng lai đã xóa
Đội Bom Vua
Xem chi tiết
Họ Nguyễn Dũng
Xem chi tiết
nguyen thi thanh truc
Xem chi tiết
Bùi Hùng Minh
Xem chi tiết
ßσss™|๖ۣۜHắc-chan|
17 tháng 3 2019 lúc 22:15

ta có:

\(\left(3x-2y\right)^2\)>  0

\(\left(4y-6x\right)^2\)> 0

\(\left|xy-24\right|\)>    0

dấu "=" xảy ra (=)

\(\hept{\begin{cases}\left(3x-2y\right)^2=0\\\left(4y-6x\right)^2=0\\\left|xy-24\right|=0\end{cases}}\left(=\right)\hept{\begin{cases}3x-2y=0\\4y-6x=0\\xy-24=0\end{cases}}\)\(\)còn lại mk chưa tính ra

Bùi Hùng Minh
17 tháng 3 2019 lúc 22:17

bạn ơi nếu làm thế này là sai đó,các biến ở các hạnh tử giống nhau mà

Trí Tiên
4 tháng 3 2020 lúc 16:15

Ta thấy : \(-\left(3x-2y\right)^2\le0\forall x,y\)

\(-\left(4y-6x\right)^2\le0\forall x,y\)

\(-\left|xy-24\right|\le0\forall x,y\)

\(\Rightarrow-\left(3x-2y\right)^2+\left(4y-6x\right)^2+\left|xy-24\right|\le0\forall x,y\)

\(\Leftrightarrow-\left(3x-2y\right)^2+\left(4y-6x\right)^2+\left|xy-24\right|+2019\le2019\forall x,y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(3x-2y\right)^2=0\\\left(4y-6x\right)^2=0\\\left|xy-24\right|=0\end{cases}}\)  \(\Leftrightarrow\hept{\begin{cases}3x=2y\\xy=24\end{cases}}\) 

Ta có : \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}=k\) \(\Rightarrow\hept{\begin{cases}x=2k\\y=3k\end{cases}}\)

Khi đó : \(xy=2k\cdot3k=6k^2=24\)

\(\Leftrightarrow k^2=4\Leftrightarrow k=\pm2\)

Với \(k=-2\Rightarrow\hept{\begin{cases}x=-4\\y=-6\end{cases}}\) ( thỏa mãn )

Với \(k=2\Rightarrow\hept{\begin{cases}x=4\\y=6\end{cases}}\) ( thỏa mãn )

Vậy : GTLN của \(-\left(3x-2y\right)^2+\left(4y-6x\right)^2+\left|xy-24\right|+2019=2019\) tại \(\left(x,y\right)\in\left\{\left(4,6\right);\left(-4,-6\right)\right\}\)

Khách vãng lai đã xóa
Nguyen An
Xem chi tiết
Nguyễn Thanh Vân
15 tháng 3 2017 lúc 20:31

Ta có: \(\dfrac{1+2y}{18}=\dfrac{1+4y}{24}\)

\(\Rightarrow\) 24 . (1 + 2y) = 18 . (1 + 4y)

\(\Rightarrow\) 24 + 48y = 18 + 72y

\(\Rightarrow\) 24 - 18 = 72y - 48y

\(\Rightarrow\) 6 = 24y

\(\Rightarrow\) y = \(\dfrac{1}{4}\)

Thay y = \(\dfrac{1}{4}\) ta có:

\(\dfrac{1+1}{24}=\dfrac{1+\dfrac{3}{2}}{6x}\)

\(\Rightarrow\) \(\dfrac{1}{12}=\dfrac{\dfrac{5}{2}}{6x}\)

\(\Rightarrow\) \(6x=\dfrac{5}{2}.12\)

\(\Rightarrow\) \(6x=30\)

\(\Rightarrow\) \(x=5\)

Vậy x = 5 và y = \(\dfrac{1}{4}\)