Những câu hỏi liên quan
Hacker lỏd
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 7 2023 lúc 8:31

b: góc HID+góc HKD=180 độ

=>HIDK nội tiếp

=>góc HIK=góc HDK

=>góc HIK=góc HCB

=>góc HIK=góc HEF

=>EF//IK

Bình luận (0)
Nấm Nấm
Xem chi tiết
Cuong Dang
1 tháng 9 2019 lúc 21:08

Hình bạn tự vẽ nhé. EF cắt AH tại L.
Xét tam giác AIM vuông tại I(MI vuông góc AB) có HF//IM ( H là trực tâm nên HF vuông góc AB, từ vuông góc đến song song >> HF//IM) >> \(\frac{AF}{AI}=\frac{AH}{AM}\left(Talet\right)\)
CMTT >> \(\frac{AE}{AK}=\frac{AH}{AM}\left(Talet\right)\)>> \(\frac{AF}{AI}=\frac{AE}{AK}\). Theo Talet đảo có EF // IK.
Xét tam giác AIK có EF // IK >> AEF đồng dạng AIK ( bạn tự cm, quá dễ) >> góc AFE = góc AIK và góc AEF = góc AKI

Xét tam giác AFL và tam giác AID : chung góc A và AFL = AID (cmt) >> AFL đồng dạng AID >> ALF = ADI đồng vị >> ID // EL

CMTT thì LE // DK. Có E,L,F thẳng hàng nên theo tiên đề Euclid suy ra I,D,K thẳng hàng.


 

Bình luận (1)
anh ta
Xem chi tiết
Nguyễn Hoàng
Xem chi tiết
Nguyễn Huệ Lam
Xem chi tiết
Cô Hoàng Huyền
19 tháng 12 2017 lúc 14:15

Bài 1: 

A B C H F D E K L

+) Chứng minh tứ giác BFLK nội tiếp:

Ta thấy FAH và LAH  là hai tam giác vuông có chung cạnh huyền AH nên AFHL là tứ giác nội tiếp. Vậy thì \(\widehat{ALF}=\widehat{AHF}\)  (Hai góc nội tiếp cùng chắn cung AF)

Lại có \(\widehat{AHF}=\widehat{FBK}\)   (Cùng phụ với góc \(\widehat{FAH}\)  )

Vậy nên   \(\widehat{ALF}=\widehat{FBK}\), suy ra tứ giác BFLK nội tiếp (Góc ngoài tại một đỉnh bằng góc trong của đỉnh đối diện)

+) Chứng minh tứ giác CELK nội tiếp:

Hoàn toàn tương tự : Tứ giác AELH nội tiếp nên \(\widehat{ALE}=\widehat{AHE}\) , mà \(\widehat{AHE}=\widehat{ACD}\Rightarrow\widehat{ALE}=\widehat{ACD}\)

Suy ra tứ giác CELK nội tiếp.

Bình luận (0)
Cô Hoàng Huyền
19 tháng 12 2017 lúc 14:22

Các bài còn lại em tách ra nhé.

Bình luận (0)
Nguyễn Huệ Lam
Xem chi tiết
linh chi
Xem chi tiết
Diem Quynh
Xem chi tiết
Vũ Minh Đức
Xem chi tiết
Cô Hoàng Huyền
30 tháng 8 2017 lúc 11:27

Đoạn thẳng c: Đoạn thẳng [A, B] của Hình tam giác TenDaGiac1 Đoạn thẳng a: Đoạn thẳng [B, C] của Hình tam giác TenDaGiac1 Đoạn thẳng b: Đoạn thẳng [C, A] của Hình tam giác TenDaGiac1 Đoạn thẳng i: Đoạn thẳng [A, D] Đoạn thẳng j: Đoạn thẳng [B, E] Đoạn thẳng k: Đoạn thẳng [C, F] Đoạn thẳng q: Đoạn thẳng [D, M] Đoạn thẳng r: Đoạn thẳng [D, I] Đoạn thẳng s: Đoạn thẳng [D, K] Đoạn thẳng t: Đoạn thẳng [D, N] Đoạn thẳng d: Đoạn thẳng [M, N] A = (-0.56, 7.34) A = (-0.56, 7.34) A = (-0.56, 7.34) B = (-2.58, 2.42) B = (-2.58, 2.42) B = (-2.58, 2.42) C = (6.44, 2.22) C = (6.44, 2.22) C = (6.44, 2.22) Điểm F: Giao điểm đường của g, c Điểm F: Giao điểm đường của g, c Điểm F: Giao điểm đường của g, c Điểm E: Giao điểm đường của h, b Điểm E: Giao điểm đường của h, b Điểm E: Giao điểm đường của h, b Điểm D: Giao điểm đường của f, a Điểm D: Giao điểm đường của f, a Điểm D: Giao điểm đường của f, a Điểm M: Giao điểm đường của l, c Điểm M: Giao điểm đường của l, c Điểm M: Giao điểm đường của l, c Điểm N: Giao điểm đường của m, b Điểm N: Giao điểm đường của m, b Điểm N: Giao điểm đường của m, b Điểm I: Giao điểm đường của n, j Điểm I: Giao điểm đường của n, j Điểm I: Giao điểm đường của n, j Điểm K: Giao điểm đường của p, k Điểm K: Giao điểm đường của p, k Điểm K: Giao điểm đường của p, k H

Gọi H là trực tâm tam giác ABC.

Xét tứ giác BMID có \(\widehat{BMD}=\widehat{BID}=90^o\Rightarrow\) BMID là tứ giác nội tiếp.

\(\Rightarrow\widehat{MIB}=\widehat{MDB}\) (Hai góc nội tiếp cùng chắn một cung)

Xét tứ giác IHKD có\(\widehat{DIH}=\widehat{DKH}=90^o\Rightarrow\widehat{DIK}=\widehat{DHK}\)

Lại có \(\widehat{DHK}=\widehat{AHF}\) (đổi đỉnh) nên \(\widehat{DHK}=\widehat{ABD}\)

Tóm lại ta có \(\widehat{DIK}=\widehat{ABD};\widehat{MIB}=\widehat{BDM}\)

Hay \(\widehat{MIB}+\widehat{BID}+\widehat{DIN}=\widehat{MDB}+90^o+\widehat{MBD}=90^o+90^o=180^o\)

Vậy M, I, K thẳng hàng.

Hoàn toàn tương tự I, K , N thẳng hàng.

Vậy nên M, N, I, K thẳng hàng.

Bình luận (0)