Cho a,b,c dương thỏa mãn a+b+c.tìm giá trị nhỏ nhất của:
P=a/4+b^2+b/4+c^2+c/a^2+4
Giúp mở với nha .Cảm ơn
Đừng quan tâm đến chủ đề nha
Tìm giá trị nhỏ nhất của biểu thức" S=2020ca-ab-bc "trong đó a,b,c là các số thỏa mãn a^2+ b^2+ c^2= 2 giúp mik vs nha. Cảm ơn nhiều
Cho a, b, c, d là các số dương thỏa mãn a2 + b2 + 2c2 + 2d2 = 1.
Tìm giá trị lớn nhất của A = 3 (a+c) (b+d).
MẤY BẠN GIÚP MÌNH, MÌNH ĐANG CẦN GẤP! CẢM ƠN NHA!
Cho a, b, c là các số thực dương thỏa mãn: a+b+c=4, a.b.c=2.
Tìm giá trị nhỏ nhất của biểu thức: P= a^4+b^4+c^4.
Giải giúp em bài nì nhá...tks mấy chế nhìu
Cho a,b,c là cá sô thực dương thỏa mãn a+b+c=1.Tìm giá trị nhỏ nhất của biểu thức!!!
T=căn bậc hai((a^3/b)+((a*b^2)/c)+c^2+b*c) + (12/(3*a+3*căn bậc hai(b*c)+4))
Tks nha..........
Toán lớp 12 đóa nhá.
cho 3 số dương a,b,c thỏa mãn
\(\sqrt{a^2+b^2}\)+\(\sqrt{b^2+c^2}\)+\(\sqrt{c^2+a^2}\)=\(\sqrt{2016}\)
tìm giá trị nhỏ nhất P=\(\frac{a^2}{b+c}\)+\(\frac{b^2}{c+a}\)+\(\frac{c^2}{a+b}\)
các bạn giúp mình nha mih cần gấp lắm mong các bạn đừng vội vàng lướt qua, mình cảm ơn
Lời giải:
Trước tiên, ta sẽ CM bất đẳng thức sau:\(P\geq \frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\)\((\star)\)
Thật vậy: BĐT tương đương với :
\(a^2\left (\frac{1}{b+c}-\frac{1}{a+b} \right )+b^2\left ( \frac{1}{c+a}-\frac{1}{b+c} \right )+c^2\left ( \frac{1}{a+b}-\frac{1}{a+c} \right )\geq 0\)
\(\Leftrightarrow a^2(a^2-c^2)+b^2(b^2-a^2)+c^2(c^2-b^2)\geq 0\)
\(\Leftrightarrow (a^2-b^2)^2+(b^2-c^2)^2+(c^2-a^2)^2\geq 0\) (luôn đúng)
BĐT \((\star)\) được chứng minh .
Giờ ta chỉ cần tìm min của \(A=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\)
Để ý rằng \(A-\left(\frac{b^2}{a+b}+\frac{c^2}{c+a}+\frac{a^2}{c+a}\right)=\sum \left(\frac{a^2-b^2}{a+b}\right)=a-b+b-c+c-a=0\)
\(\Rightarrow 2A=\frac{a^2+b^2}{a+b}+\frac{b^2+c^2}{b+c}+\frac{c^2+a^2}{c+a}\). Sử dụng Cauchy-Schwarz:
\(2A\geq \frac{(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2})^2}{2(a+b+c)}=\frac{1008}{a+b+c}\)
Sử dụng AM_GM: \(\sqrt{2016}=\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\geq \frac{a+b}{\sqrt{2}}+\frac{b+c}{\sqrt{2}}+\frac{c+a}{\sqrt{2}}\)
\(\Leftrightarrow a+b+c\leq 12\sqrt{7}\) suy ra \(A\geq 6\sqrt{7}\) suy ra \(P_{\min}=6\sqrt{7}\)
Dấu bằng xảy ra khi \(a=b=c=4\sqrt{7}\)
Cho a,b,c là các số thực dương thỏa mãn a+b=1 . Tìm giá trị nhỏ nhất của (2/ab) + (1/a^2+b^2) +(a^4+b^4/2)
Giúp mình bài này với!Có kèm lời giải thì càng tốt nha!Thanks!
1.Cho a,b,c là 3 số thực thỏa mãn a.b.c=1
Giá trị nhỏ nhất cua A=a^2:(1+b)+b^2:(1+c)+c^2:(1+a)
2.Với -4<x<9 .Tìmgiá trị nhỏ nhất của P=1:(9-x)+1:(x+4)
3.Cho x,y thỏa mãn x^2.(x^2+2y^2-3)+(y^2-2)^2=1
Tìm GTLN và GTNN của A=x^2+y^2
4.Tìm giá trị lớn nhất của A=Căn bậc hai (3-a)+a
5.Choa,b>0 và 3a-5b=12
Tìm GTLN của P=a.b
Giúp mình bài này với!Có kèm lời giải thì càng tốt nha!Thanks!
1.Cho a,b,c là 3 số thực thỏa mãn a.b.c=1
Giá trị nhỏ nhất cua A=a^2:(1+b)+b^2:(1+c)+c^2:(1+a)
2.Với -4<x<9 .Tìmgiá trị nhỏ nhất của P=1:(9-x)+1:(x+4)
3.Cho x,y thỏa mãn x^2.(x^2+2y^2-3)+(y^2-2)^2=1
Tìm GTLN và GTNN của A=x^2+y^2
4.Tìm giá trị lớn nhất của A=Căn bậc hai (3-a)+a
5.Choa,b>0 và 3a=5b=12
Tìm GTLN của P=a.b
Chi biet phan 5 thoi @
Vi 3a=5b=12suy ra a=4 ;b=2,4 ta co p=a.b suy ra p=4×2.4=9.6 suy ra p>[=9.6 gtln=9.6
nguyen xuan duong sr minh viet nham dau bai 3a-5b=12
Giúp mình bài này với!Có kèm lời giải thì càng tốt nha!Thanks!
1.Cho a,b,c là 3 số thực thỏa mãn a.b.c=1
Giá trị nhỏ nhất cua A=a^2:(1+b)+b^2:(1+c)+c^2:(1+a)
2.Với -4<x<9 .Tìmgiá trị nhỏ nhất của P=1:(9-x)+1:(x+4)
3.Cho x,y thỏa mãn x^2.(x^2+2y^2-3)+(y^2-2)^2=1
Tìm GTLN và GTNN của A=x^2+y^2
4.Tìm giá trị lớn nhất của A=Căn bậc hai (3-a)+a
5.Choa,b>0 và 3a=5b=12
Tìm GTLN của P=a.b