Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
tran phuong thao

cho 3 số dương a,b,c thỏa mãn

\(\sqrt{a^2+b^2}\)+\(\sqrt{b^2+c^2}\)+\(\sqrt{c^2+a^2}\)=\(\sqrt{2016}\)

tìm giá trị nhỏ nhất P=\(\frac{a^2}{b+c}\)+\(\frac{b^2}{c+a}\)+\(\frac{c^2}{a+b}\)

các bạn giúp mình nha mih cần gấp lắm mong các bạn đừng vội vàng lướt qua, mình cảm ơn

Akai Haruma
17 tháng 2 2017 lúc 23:23

Lời giải:

Trước tiên, ta sẽ CM bất đẳng thức sau:\(P\geq \frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\)\((\star)\)

Thật vậy: BĐT tương đương với :

\(a^2\left (\frac{1}{b+c}-\frac{1}{a+b} \right )+b^2\left ( \frac{1}{c+a}-\frac{1}{b+c} \right )+c^2\left ( \frac{1}{a+b}-\frac{1}{a+c} \right )\geq 0\)

\(\Leftrightarrow a^2(a^2-c^2)+b^2(b^2-a^2)+c^2(c^2-b^2)\geq 0\)

\(\Leftrightarrow (a^2-b^2)^2+(b^2-c^2)^2+(c^2-a^2)^2\geq 0\) (luôn đúng)

BĐT \((\star)\) được chứng minh .

Giờ ta chỉ cần tìm min của \(A=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\)

Để ý rằng \(A-\left(\frac{b^2}{a+b}+\frac{c^2}{c+a}+\frac{a^2}{c+a}\right)=\sum \left(\frac{a^2-b^2}{a+b}\right)=a-b+b-c+c-a=0\)

\(\Rightarrow 2A=\frac{a^2+b^2}{a+b}+\frac{b^2+c^2}{b+c}+\frac{c^2+a^2}{c+a}\). Sử dụng Cauchy-Schwarz:

\(2A\geq \frac{(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2})^2}{2(a+b+c)}=\frac{1008}{a+b+c}\)

Sử dụng AM_GM: \(\sqrt{2016}=\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\geq \frac{a+b}{\sqrt{2}}+\frac{b+c}{\sqrt{2}}+\frac{c+a}{\sqrt{2}}\)

\(\Leftrightarrow a+b+c\leq 12\sqrt{7}\) suy ra \(A\geq 6\sqrt{7}\) suy ra \(P_{\min}=6\sqrt{7}\)

Dấu bằng xảy ra khi \(a=b=c=4\sqrt{7}\)


Các câu hỏi tương tự
tran phuong thao
Xem chi tiết
Quách Phú Đạt
Xem chi tiết
Neet
Xem chi tiết
lê thị tiều thư
Xem chi tiết
tran phuong thao
Xem chi tiết
Hoài Đoàn
Xem chi tiết
Phú Nguyễn
Xem chi tiết
Mai Thị Huyền My
Xem chi tiết
Trần Việt Linh
Xem chi tiết