Giải HPT :
\(\int^{y^2=\left(x+8\right)\left(x^2+2\right)}_{16x-8y+16=5x^2+4xy-y^2}\)
giải hpt:
\(\hept{\begin{cases}y^2=\left(5x+4\right)\left(4-x\right)\\y^2-5x^2-4xy+16x-8y+16=0\end{cases}}\)
(=)\(\hept{\begin{cases}y^2=\left(5x+4\right)\left(4-x\right)\left(1\right)\\y^2-4xy-8y+\left(16x-5x^2+16\right)=0\left(2\right)\end{cases}}\)
Thế (1) vào (2) ta được: (2) (=) 2y2 -4xy -8y =0 (=) y2 - 2xy - 4y =0 (=) y(y-2x-4)=0 (=) y=0 hoặc y=2x +4
Với y=0 => x=-4/5 hoặc x=4
Với y=2x+2. Thế vào (1) ta được x=0 và y=4
Giải hệ phương trình \(\hept{\begin{cases}y^2=\left(x+8\right)\left(x^2+2\right)\\16x-8y+16=5x^2+4xy-y^2\end{cases}}\)
(d) qua A(5; 6) : y = mx - 5m + 6 (1)
(C) : (x - 1)² + (y - 2)² = 1 (2)
Thay y từ (1) vào (2) ta có phương trình hoành độ giao điểm của (d) và (C)
(x - 1)² + (mx - 5m + 4)² = 1
Khai triển ra pt bậc 2 : (m² + 1)x² - 2(5m² - 4m + 1)x + 25m² - 40m + 17 = 0 (*)
Để (d) tiếp xúc (C) thì (*) phải có nghiệm kép
∆' = (5m² - 4m + 1)² - (m² + 1)(25m² - 40m + 17) = - 4(3m² - 8m + 4) = 4(m - 2)(2 - 3m) = 0 => m = 3/2; m = 2
KL : Có 2 đường thẳng cần tìm
(d1) : y = (3/2)(x - 1)
(d2) : y = 2x - 4
∆ ∠ ∡ √ ∛ ∜ x² ⁻¹ ∫ π × ∵ ∴ | | , ⊥,∈∝ ≤ ≥− ± , ÷ ° ≠ → ∞, ≡ , ≅ , ∑,∪,¼ , ½ , ¾ , ≈ , [-b ± √(b² - 4ac) ] / 2a Σ Φ Ω α β γ δ ε η θ λ μ π ρ σ τ φ ω ё й½ ⅓ ⅔ ¼ ⁰ ¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹ ⁺ ⁻ ⁼ ⁽ ⁾ ⁿ ₁ ₂ ₃₄₅ ₆ ₇ ₈ ₉ ₊ ₋ ₌ ₍ ₎ ∊ ∧ ∏ ∑ ∠ ,∫ ∫ ψ ω Π∮ ∯ ∰ ∇ ∂ • ⇒ ♠ ★
giải hệ phương trình \(\hept{\begin{cases}y^2=\left(x+8\right)\left(x^2+2\right)\\16x-8y+16=5x^2+4xy-y^2\end{cases}}\)
Giải pt và hpt :
1. \(\left(x-3\right)\sqrt{10-x^2}=x^2-x-12\)
2. \(\begin{cases}x+3y=1\\x^2+y^2-3y=1\end{cases}\)
3. \(\begin{cases}y^2=\left(5x+4\right)\left(4-x\right)\\y^2-5x^2-4xy+16x-8y+16=0\end{cases}\)
giải hệ phương trình:
\(\left\{{}\begin{matrix}y^2=\left(5x+4\right)\left(4-x\right)\\y^2-5x^2-4xy+16x-8y+16=0\end{matrix}\right.\)
\(y^2-2\left(2x+4\right)y-5x^2+16x+16=0\)
\(\Delta'=\left(2x+4\right)^2+5x^2-16x-16=9x^2\)
\(\Rightarrow\left\{{}\begin{matrix}y=2x+4+3x=5x+4\\y=2x+4-3x=4-x\end{matrix}\right.\)
- Với \(y=5x+4\) thay vào pt đầu:
\(\left(5x+4\right)^2-\left(5x+4\right)\left(4-x\right)=0\Rightarrow...\)
- Với \(y=4-x\) thay vào pt đầu:
\(\left(4-x\right)^2-\left(4-x\right)\left(5x+4\right)=0\Rightarrow...\)
Nghiệm nguyên dương của hệ phương trình \(\left\{{}\begin{matrix}y^2=\left(x+8\right)\left(x^2+2\right)\\16x-8y+16=5x^2+4xy-y^2\end{matrix}\right.\)là...
Biến đổi pt dưới:
\(y^2-8y+16=5x^2+4xy-16x\)
\(\Leftrightarrow\left(y-4\right)^2=5x^2-4x\left(y-4\right)\)
\(\Leftrightarrow\left(y-4\right)^2+4x\left(y-4\right)+4x^2=9x^2\)
\(\Leftrightarrow\left(y-4+2x\right)^2-9x^2=0\)
\(\Leftrightarrow\left(y-x-4\right)\left(y+5x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=x+4\\y=4-5x\end{matrix}\right.\)
Thay vào pt trên:
TH1: \(y=x+4\Rightarrow\left(x+4\right)^2=\left(x+8\right)\left(x^2+2\right)\)
\(\Leftrightarrow x^3+7x^2-6x=0\)
\(\)\(\Leftrightarrow x\left(x^2+7x-6\right)=0\) (ko có nghiệm nguyên dương)
TH2: \(y=4-5x\Rightarrow\left(4-5x\right)^2=\left(x+8\right)\left(x^2+2\right)\)
\(\Leftrightarrow x^3-17x^2+42x=0\)
\(\Leftrightarrow x\left(x^2-17x+42\right)=0\Rightarrow\left[{}\begin{matrix}x=0\left(l\right)\\x=3\Rightarrow y=-11\left(l\right)\\x=14\Rightarrow y=-66\left(l\right)\end{matrix}\right.\)
Vậy hệ đã cho ko có cặp nghiệm nguyên dương nào
giải hpt:\(\left\{{}\begin{matrix}8y+x=3-4xy\\x^3+x^2\left(y-2\right)=y^2-2y\end{matrix}\right.\)
giải hpt: \(\left\{{}\begin{matrix}\left(x+y\right)^2\left(8x^2+8y^2+4xy-13\right)+5=0\\2x+\frac{1}{x+y}=1\end{matrix}\right.\)
1. Giải pt: \(x+\sqrt{x-1}=3+\sqrt{2\left(x^2-5x+5\right)}\)
2. Giải hpt: \(\left\{{}\begin{matrix}x-2\sqrt{y+1}=3\\x^3-4x^2\sqrt{y+1}-9x-8y=-52-4xy\end{matrix}\right.\)
Câu 1:
ĐK:..............
PT $\Leftrightarrow x-3+\sqrt{x-1}=\sqrt{2(x^2-5x+5)}$
$\Rightarrow (x-3+\sqrt{x-1})^2=2(x^2-5x+5)$
$\Leftrightarrow 2(x-3)\sqrt{x-1}=x^2-5x+2$
$\Leftrightarrow x^2-5x+2-2(x-3)\sqrt{x-1}=0$
$\Leftrightarrow (x^2-6x+9)+(x-1)-2(x-3)\sqrt{x-1}=6$
$\Leftrightarrow (x-3)^2+(x-1)-2(x-3)\sqrt{x-1}=6$
$\Leftrightarrow (x-3-\sqrt{x-1})^2=6$
$\Leftrightarrow x-3-\sqrt{x-1}=\pm \sqrt{6}$
$\Leftrightarrow \sqrt{x-1}=x-3\pm \sqrt{6}$
$\Rightarrow x-1=(x-3\pm \sqrt{6})^2$ (ĐK: $x\geq 3\pm \sqrt{6}$)
Giải PT ta thu được $x=\frac{1}{2}(7+2\sqrt{6}+\sqrt{9+4\sqrt{6}})$
Câu 2: ĐK..............
PT $(1)\Rightarrow \sqrt{y+1}=\frac{x-3}{2}$
$\Rightarrow y+1=\frac{(x-3)^2}{4}$
PT $(2)\Leftrightarrow x^3-4x^2\sqrt{y+1}+4x(y+1)-8(y+1)-9x+60=0$
$\Leftrightarrow x^3-4x^2.\frac{x-3}{2}+4x.\frac{(x-3)^2}{4}-8.\frac{(x-3)^2}{4}-9x+60=0$
$\Leftrightarrow x^3-2x^2(x-3)+x(x-3)^2-2(x-3)^2-9x+60=0$
$\Leftrightarrow -x^2+6x+7=0$
$\Leftrightarrow x=7$ hoặc $x=-1$
Từ PT $(1)$ dễ thấy $x\geq 3$ nên $x=7$
$\Rightarrow y=\frac{(x-3)^2}{4}=4$
Vậy...........