tìm tất cả tam giác vuông có độ dài các cạnh là số nguyên mà số đo diện tích bằng số đo chu vi
Tìm tất cả các tam giác vuông có độ dài cạnh là số nguyên và số do diện tích bằng số đo chu vi
Tìm tất cả các tam giác vuông có độ dài các cạnh là số tự nhiên và số đo diện tích bằng số đo chu vi
Gọi số đo 3 cạnh của tam giác đó là a,b,c ( c là cạnh huyền)
Theo bài ra ta có \(\hept{\begin{cases}c^2=a^2+b^2\\ab=2\left(a+b+c\right)\end{cases}}\)
Ta có
c2=a2+b2(1)
=> c2=(a+b)2-2ab= (a+b)2-4(a+b+c)
=> c2=a2+b2+2ab-4a-4b-4c
=> c2+4c= a2+b2+2ab-4a-4b
<=> c2+4c+4=a2+b2+2ab-4a-4b+4
<=> (c+2)2=(a+b-2)2
Do a,b,c là số tự nhiên nên
c+2=a+b-2 <=> c=a+b-4
Thay c=a+b-2 vào (1) ta được
(a+b-4)2=a2+b2
<=> a2+b2+16-8a-8b+2ab=a2+b2
<=> 2ab-8a-8b=-16
<=> ab-4a-4b=-8
<=> ab-4a-4b+16=8
<=> a(b-4)-4(b-4)=8
<=> (b-4)(a-4)=8
Đến đây lập bảng xét ước là ra
tổng 2 số là 16.26 . nếu gấp số thứ nhất lên 5 lần và gấp số thứ 2 lên 2 lần thì tổng mới là 43.2 .tìm 2 số
Tìm tất cả cac tam giác vuông có độ dài các cạnh là số tự nhiên và số đo diện tích bằng số đo chu vi
Có hai tam giác vuông có các cạnh (5;12;13) và (6;8;10) thỏa mãn yêu cầu bài toán!
k đúng cho mk nha!
Tìm tất cả các tam giác vuông có số đo các cạnh là các số nguyên dương và số đo diện tích bằng số đo chu vi
Gọi \(a;b;c\) là các cạnh tam vuông
Theo đề bài ta có :
\(\left\{{}\begin{matrix}a^2+b^2=c^2\\\dfrac{1}{2}ab=\left(a+b+c\right)\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a^2+b^2=c^2\left(1\right)\\ab=2\left(a+b+c\right)\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow c^2=\left(a+b\right)^2-2ab\)
\(\Leftrightarrow c^2=\left(a+b\right)^2-4\left(a+b+c\right)\) (do (2))
\(\Leftrightarrow c^2+4=\left(a+b\right)^2-4\left(a+b\right)-4c+4\)
\(\Leftrightarrow\left(a+b\right)^2-4\left(a+b\right)+4=c^2+4c+4\)
\(\Leftrightarrow\left(a+b-2\right)^2=\left(c+2\right)^2\)
\(\Leftrightarrow a+b-2=c+2\left(đk:a+b\ge2\right)\)
\(\Leftrightarrow c=a+b-4\)
Thay vào \(\left(2\right)\) ta được
\(ab=2\left(a+b+a+b-4\right)\)
\(\Leftrightarrow ab=4a+4b-8\)
\(\Leftrightarrow ab-4a-4b+16=8\)
\(\Leftrightarrow a\left(b-4\right)-4\left(b-4\right)=8\)
\(\Leftrightarrow\left(a-4\right)\left(b-4\right)=8\)
\(\Leftrightarrow\left(a-4\right);\left(b-4\right)\in\left\{1;2;4;8\right\}\)
\(\Leftrightarrow\left(a;b\right)\in\left\{\left(5;12\right);\left(6;8\right);\left(8;6\right);\left(12;5\right)\right\}\)
\(\Leftrightarrow\left(a;b;c\right)\in\left\{\left(5;12;13\right);\left(6;8;10\right);\left(8;6;10\right);\left(12;5;13\right)\right\}\) thỏa đề bài
Tìm tất cả các tam giác vuông có số đo các cạnh là số nguyên dương và số đo diện tích bằng số đo chu vi
tìm tất cả các tam giác vuông có số đo các cạnh là các số nguyên dương và số đo diện tích bằng số đo chu vi
Tìm tất cả các tam giác vuông có số đo các cạnh là các số nguyên dương và số đo diện tích bằng số đo chu vi
Tìm tất cả các tam giác vuông có số đo các cạnh là các số nguyên dương và số đo diện tích bằng số đo chu vi
Tìm tất cả các tam giác vuông có số đo các cạnh là số nguyên dương và số đo diện tích bằng số đo chu vi
Nguyễn Minh Phương: đậm chất trẻ trâu,giỏi thì làmđi
Gọi a, b, c là số đo 3 cạnh của tam giác vuông cần tìm. Giả sử 1≤a≤b<c1≤a≤b<c
Ta có hệ phương trình : {a2+b2=c2(1)ab=2(a+b+c)(2){a2+b2=c2(1)ab=2(a+b+c)(2)
Từ (1) c2=(a+b)2−2abc2=(a+b)2−2ab
⇔c2=(a+b)2−4(a+b+c)⇔c2=(a+b)2−4(a+b+c) (theo (2))
⇔(a+b)2−4(a+b)=c2+4c⇔(a+b)2−4(a+b)=c2+4c
(a+b−2)2=(c+2)2(a+b−2)2=(c+2)2
c = a + b − 4.
Thay vào (2) ta được: ab = 2(a + b + a + b − 4)
ab −4a−4b + 8 = 0
⇔⇔ b(a −4) −4(a−4) = 8
⇔⇔(a −4)(b−4) = 8
Phân tích 8 = 1.8 = 2.4 nên ta có:
{a=5b=12{a=5b=12 hoac {a=6b=8{a=6b=8
Từ đó ta có 2 tam giác vuông có các cạnh (5;12;13):(6;8;10)