B=2 mũ 1 + 2 mũ 2 + 2 mũ 3 + .... +2 mũ 30 chứng minh rằng B chia hết cko 21
B=2 mũ 1 + 2 mũ 2 + 2 mũ 3 + .... +2 mũ 30 chứng minh rằng B chia hết cko 21
B=2 mũ 1 + 2 mũ 2 + 2 mũ 3 + .... +2 mũ 30 chứng minh rằng B chia hết cko 21
Ta có: 21=3 x 7 vì 3 và 7 là 2 số nguyên tố cùng nhau
\(B=2+2^2+2^3+....+2^{30}\)
\(\Rightarrow B=\left(2+2^2\right)+\left(2^3+2^4\right)+....+\left(2^{29}+2^{30}\right)\)
\(\Rightarrow B=2\left(1+2\right)+2^3\left(1+2\right)+....+2^{29}\left(1+2\right)\)
\(\Rightarrow B=2\cdot3+2^3\cdot3+....+2^{29}\cdot3\)
\(\Rightarrow B=3\left(2+2^3+...+2^{29}\right)\)
\(\Rightarrow B⋮3\left(1\right)\)
\(B=2+2^2+2^3+....+2^{30}\)
\(\Rightarrow B=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{28}+2^{29}+2^{30}\right)\)
\(\Rightarrow B=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+....+2^{28}\left(1+2+2^2\right)\)
\(\Rightarrow B=2\cdot7+2^4\cdot7+...+2^{28}\cdot7\)
\(\Rightarrow B=7\left(2+2^4+....+2^{28}\right)\)
\(\Rightarrow B⋮7\left(2\right)\)
(1) (2) => B chia hết cho 21 (đpcm)
B=2 mũ 1 + 2 mũ 2 + 2 mũ 3 + .... +2 mũ 30 chứng minh rằng B chia hết cko 21
+ Ta có: \(B=\left(2^1+2^3+2^5\right)+\left(2^2+2^4+2^6\right)+...+\left(2^{26}+2^{28}+2^{30}\right)\)
- Vì biểu thức B có tổng cộng 30 số hạng, mà mỗi cặp trong biểu thức B lại có 3 số hạng nên:
- Tổng số cặp trong biểu thức B là: 30 : 3 = 10 ( cặp )
+ Ta lại có: \(B=2.\left(2^0+2^2+2^4\right)+2^2.\left(2^0+2^2+2^4\right)+...+2^{26}.\left(2^0+2^2+2^4\right)\)
\(\Leftrightarrow B=\left(1+4+16\right).\left(2+2^2+...+2^{26}\right)\)
\(\Leftrightarrow B=21.\left(2+2^2+...+2^{26}\right)⋮21\)
Vậy \(B⋮21\)
^_^ Chúc bạn học tốt ^_^
B=2 mũ 1 + 2 mũ 2 + 2 mũ 3 + .... +2 mũ 30 chứng minh rằng B chia hết cko 21
B=2 mũ 1 + 2 mũ 2 + 2 mũ 3 + .... +2 mũ 30 chứng minh rằng B chia hết cko 21
\(B=2+2^2+2^3+....+2^{30}\)
\(B=\left(2+2^2+2^3+2^4+2^5+2^6\right)+....+\left(2^{25}+2^{26}+2^{27}+2^{28}+2^{29}+2^{30}\right)\)
\(B=\left(2+2^2+2^3+2^4+2^5+2^6\right)+....+25^{24}\left(2+2^2+2^3+2^4+2^5+2^6\right)\)
\(B=126+...+2^{24}.126\)
\(B=126\left(1+...+2^{24}\right)\)
\(\Rightarrow B=126\left(1+...+2^{24}\right)⋮21\)
Vậy \(B⋮21\)
Hok tốt!!!
B=2 mũ 1 + 2 mũ 2 + 2 mũ 3 + .... +2 mũ 30 chứng minh rằng B chia hết cko 21
B=2 mũ 1 + 2 mũ 2 + 2 mũ 3 + .... +2 mũ 30 chứng minh rằng B chia hết cko 21
Nếu B chia hết cho 21 suy ra B chia hết cho 3,7
B=( 2+2^2)+(2^3+2^4)+......+( 2^9+2^30)
= 2(1+2)+2^3(1+2)+.......+2^9(1+2)
=2.3+2^3.3+....+2^29.3
=3(2+2^3+........+2^29) chia hét cho 3
B=(2+2^2+2^3)+.....+(2^28+2^29+2^30)
=2(1+2+2^2)+........+2^28(1+2+2^2)
=2.7+.....+2^28.7
=7(2+......+2^28) chia hết cho 7
Vậy B chia hết cho 7
2.Chứng minh rằng
A= 2 = 2 mũ 2 +2 mũ 3 +...+ 2 mũ 60 chia hết cho 21 và 15
B= 5 + 5 mũ 2 + 5 mũ 3 +...+ 5 mũ 12 chia hết cho 30
Các bn trả lời rõ hơn có đc kg?
Bài 2: a) Cho A = 2 + 2 mũ 2 + 2 mũ 3 + …+ 2 mũ 20 + 2 mũ 21 . Chứng minh: A chia hết cho 7. b) Cho S = 3+3 mũ 2 + 3 mũ 3 + ... + 3 9 . Chứng tỏ rằng S chia hết cho 13
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\left(2+...+2^{19}\right)⋮7\)