cho các số nguyên a,b,c,d thõa mãn : a + b = c + d và ab + 1 = cd
chứng minh c = d
cho các số nguyên a,b,c,d thõa mãn các điều kiện
a+b=c+d và ab+1=cd
chứng minh c=d
\(a=b=c+d\Rightarrow\hept{\begin{cases}b\left(a+b=b\left(c+d\right)\right)\\ab+b^2=bc+bd\end{cases}}\)
Mà : \(ab+1=cd\)
Do đó : \(\left(ab+b^2\right)-\left(ab+1\right)=bc+bd-cd\)
\(\Leftrightarrow ab+b^2-ab-1=bc+bd-cd\)
\(\Leftrightarrow b^2-bc-bd+cd=1\)
\(\Leftrightarrow b\left(b-c\right)-d\left(b-c\right)=1\)
\(\Leftrightarrow\left(b-c\right)\left(b-d\right)=1\)
\(\Leftrightarrow\orbr{\begin{cases}b-c=b-d=1\\b-c=b-d=1\end{cases}}\)
\(\Rightarrow c=d\)
Cho các số nguyên a,b,c,d thỏa mãn a+b=c+d và ab+1=cd. Chứng minh rằng c=d
Cho a,b,c,d là các số nguyên thỏa mãn: a+b = c+d và ab +1 = cd Chứng minh rằng : c= d
Cho các số nguyên a,b,c,d thỏa mãn ab-cd =1 và a+b=c+d . Chứng minh rằng: a=b
Cho các số nguyên a,b,c,d thoả mãn ab - cd = 1 và a + b= c + d. Chứng minh rằng a=b
Cho các số nguyên a,b,c,d thỏa mãn: a+b=c+d và ab+1=cd
Chứng minh rằng: c=d
a+b=c+d => a=c+d-b
thay vào ab+1=cd
=> (c+d-b)*b+1=cd
<=> cb+db-cd+1-b^2=0
<=> b(c-b)-d(c-b)+1=0
<=> (b-d)(c-b)=-1
a,b,c,d,nguyên nên (b-d) và (c-b) nguyên
mà (b-d)(c-b)=-1 nên có 2 TH:
TH1: b-d=-1 và c-b=1
<=> d=b+1 và c=b+1
=> c=d
TH2: b-d=1 và c-b=-1
<=> d=b-1 và c=b-1
=> c=d
Vậy từ 2 TH ta có c=d.
a+b=c+d => a=c+d-b
thay vào ab+1=cd
=> (c+d-b)*b+1=cd
<=> cb+db-cd+1-b^2=0
<=> b(c-b)-d(c-b)+1=0
<=> (b-d)(c-b)=-1
a,b,c,d,nguyên nên (b-d) và (c-b) nguyên
mà (b-d)(c-b)=-1 nên có 2 TH:
TH1: b-d=-1 và c-b=1
<=> d=b+1 và c=b+1
=> c=d
TH2: b-d=1 và c-b=-1
<=> d=b-1 và c=b-1
=> c=d
Vậy từ 2 TH ta có c=d.
a+b=c+d => a=c+d-b
thay vào ab+1=cd
=> (c+d-b)*b+1=cd
<=> cb+db-cd+1-b^2=0
<=> b(c-b)-d(c-b)+1=0
<=> (b-d)(c-b)=-1
a,b,c,d,nguyên nên (b-d) và (c-b) nguyên
mà (b-d)(c-b)=-1 nên có 2 TH:
TH1: b-d=-1 và c-b=1
<=> d=b+1 và c=b+1
=> c=d
TH2: b-d=1 và c-b=-1
<=> d=b-1 và c=b-1
=> c=d
Vậy từ 2 TH ta có c=d.
Cho các số nguyên a,b,c,d thỏa mãn: a+b=c+d và ab+1=cd
Chứng minh rằng: c=d
a+b=c+d => a=c+d-b
thay vào ab+1=cd
=> (c+d-b)*b+1=cd
<=> cb+db-cd+1-b^2=0
<=> b(c-b)-d(c-b)+1=0
<=> (b-d)(c-b)=-1
a,b,c,d,nguyên nên (b-d) và (c-b) nguyên
mà (b-d)(c-b)=-1 nên có 2 TH:
TH1: b-d=-1 và c-b=1
<=> d=b+1 và c=b+1
=> c=d
TH2: b-d=1 và c-b=-1
<=> d=b-1 và c=b-1
=> c=d
Vậy từ 2 TH ta có c=d.
Cho các số nguyên a,b,c,d thoả mãn điều kiện:
a + b = c + d và ab + 1 = cd
Chứng minh c = d
bạn nhấn vào nha
cho các số nguyên a;b;c;d thỏa mãn điều kiện: a+b=c+d và a.b+1=c.d. CMR: c=d
a/Chứng tỏ với mọi số nguyên n, thì: (n-1)(n+2)+12 không chia hết cho 9
b/Cho các số nguyên a;b;c;d thõa mãn điều kiện:
a+b=c+d và ab+1=cd.Chứng tỏ c=d
a) Vì (n + 2) - (n - 1) = 3 chia hết cho 3 nên n + 2 và n - 1 cùng chia hết cho 3 hoặc cùng không chia hết cho 3.
*) Nếu n + 2 và n - 1 cùng chia hết cho 3 \(\Rightarrow\)(n + 2)(n - 1) chia hết cho 9.
Mà 12 không chia hết cho 9
\(\Rightarrow\)(n + 2)(n - 1) + 12 không chia hết cho 9.
*) Nếu n + 2 và n - 1 cùng không chia hết cho 3 \(\Rightarrow\)(n + 2)(n - 1) không chia hết cho 3 \(\Rightarrow\)(n + 2)(n - 1) + 12 không chia hết cho 3 \(\Rightarrow\)(n + 2)(n - 1) + 12 không chia hết cho 9
Vậy (n - 1)(n + 2) + 12 không chia hết cho 9
b) ab + 1 = cd.(1)
a + b = c + d \(\Rightarrow\)a = c + d - b.
Thay a vào (1) ta có :
(c + d - b).b + 1 = cd
\(\Rightarrow\)cb + db - b2 + 1 = cd
\(\Rightarrow\) 1 = cd - cb - db + b2
\(\Rightarrow\) 1 = (cd - cb) - (db - b2)
\(\Rightarrow\) 1 = c(d - b) - b(d - b)
\(\Rightarrow\) 1 = (c - b)(d - b)
\(\Rightarrow\) c - b = d - b
\(\Rightarrow\)c = d (đpcm)