Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nexon
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 2 2023 lúc 20:16

a: Xet ΔAHB vuôg tại H và ΔCAB vuông tại A có

góc B chung

=>ΔAHB đồng dạng với ΔCAB

b: Xét ΔAHB vuông tại H có HE là đường cao

nen AE*AB=AH^2

Xét ΔAHC vuông tạiH có HF là đường cao

nên AF*AC=AH^2

=>AE*AB=AF*AC

c: góc MEB=góc AEF=góc AHF=góc MCF

Xét ΔMEB và ΔMCF có

góc MEB=góc MCF

góc M chung

=>ΔMEB đồng dạng với ΔMCF

=>ME/MC=MB/MF

=>ME/MB=MC/MF

=>ΔMEC đồng dạng với ΔMBF

=>góc MCE=góc MFB

Tien nguyen xuan
Xem chi tiết
Tien nguyen xuan
9 tháng 4 2017 lúc 19:31

giup toi voi

Hà Trần Nguyên Ngân
9 tháng 4 2017 lúc 19:38

a, xét tam giác vuông AIB và tam giác vuông AIC có:

AI chung

AB=AC =>  tam giác AIB=tam giác AIC (cạnh huyền - cạnh góc vuông)

=>góc BAI=góc CAI (2 goc tương ứng)

=>AI là tia phân giác góc BAC

Tien nguyen xuan
9 tháng 4 2017 lúc 19:40

VE giup to cai hinh

Đặng Thu Trang
Xem chi tiết
Khoi My Tran
Xem chi tiết
Nguyễn Hiền Mai
6 tháng 2 2017 lúc 21:05

-Thêm điều kiện góc C = góc F để tam giác ABC = tam giác DEF (g-c-g)

-Thêm điều kiện BC = EF để tam giác ABC = tam giác DEF ( c.huyền - c.g.vuông )

- Thêm điều kiện AB = DE để tam giác ABC = tam giác DEF ( c-g-c)

Nguyễn Hiền Mai
6 tháng 2 2017 lúc 21:10

2. Xét tam giác ABH và tam giác ACK có :

AB = AC (tam giác ABC cân tại A)

Góc A chung

góc AKC = góc AHB ( = 90 độ )

=>Tam giác AKC và tam giác ABH (c.huyền-g.nhọn)

=>AH = AK ( cặp cạnh t/ứng )

Nguyễn Hiền Mai
6 tháng 2 2017 lúc 21:13

2.b)Xét tam giác AKI và tam giác AHI có:

AI chung

góc AKI = góc AHI = 90 độ

AH = AK (câu a)

=> góc KAI = góc HAI ( cặp góc t/ứng )

=> AI là p/giác góc A.

World football superstar...
Xem chi tiết
Pé Yến Siêu Quậy
Xem chi tiết
đỗ thị thu
Xem chi tiết
Lam
Xem chi tiết
thai le
Xem chi tiết
Nguyễn Nguyệt Hằng
17 tháng 4 2017 lúc 21:52

B A C E F D

a.Xét \(\Delta ABD\)\(\Delta EBD\) có:

\(\widehat{ABD}=\widehat{EBD}\) ( giả thiết)

BD - cạnh chung

\(\widehat{BAD}=\widehat{BED}\) ( = 90 do)

\(\Rightarrow\Delta ABD=\Delta EBD\left(c.h-g.n\right)\)

\(\Rightarrow AB=EB\) ( 2 cạnh tương ứng)

b.Xét \(\Delta ADF\)\(\Delta EDC\) có:

\(\widehat{ADF}=\widehat{EDC}\) ( đối đỉnh)

AD = ED ( vi \(\Delta ABD=\Delta EBD\) )

\(\widehat{DAF}=\widehat{DEC}\) ( = 90 do)

\(\Rightarrow\Delta ADF=\Delta EDC\left(g.c.g\right)\)

=> DF = DC ( 2 cạnh tương ứng)

=> \(\Delta FDC\) cân tại D

c.Ta có:AB = EB (cm a)

=> \(\Delta ABE\) cân tại B

Mà BD là đường phân giác \(\widehat{ABE}\)

=> BD là đường trung trực của \(\Delta ABE\)

=> \(BD\perp AE\) (1)

Lại có: \(\Delta ADF=\Delta EDC\) ( cm b )

=>AF = EC ( 2 cạnh tương ứng)

Mà AB = BE => AB+AF=BE+EC

=> BF = BC. => \(\Delta BFC\) cân tại B

Mà BD là đường phân giác \(\widehat{ABC}\) hay \(\widehat{FBC}\)

=> BD là đường trung trực của \(\Delta FBC\)

=> \(BD\perp FC\) (2)

Từ (1),(2) => AE// FC ( dpcm)

thai le
17 tháng 4 2017 lúc 21:11

tra loi jup minh cau hoi

Nguyễn Thị Ngọc Thơ
17 tháng 4 2017 lúc 21:27

Bài này cũng dễ thôi !

Hình bạn tự vẽ nha

Chứng minh

a, Xét \(\Delta BAD\)\(\Delta BED\)

BD chung

\(\widehat{ABD}=\widehat{EBD}\) ( gt )

\(\widehat{BAD}=\widehat{BED}\) (= 1v )

\(\Rightarrow\Delta BAD=\Delta BED\) (ch - gn )

\(\Rightarrow BA=BE\)

b, \(\Delta BAD=\Delta BED\) (câu a )

\(\Rightarrow AD=DE\)

Xét \(\Delta DAF\)\(\Delta DEC\) có :

AD = DE (c/m trên )

\(\widehat{ADF}=\widehat{EDC}\) (đối đỉnh )

\(\widehat{DAF}=\widehat{DEC}\) (= 1v )

\(\Rightarrow\Delta DAF=\Delta DEC\) ( g.c.g)

\(\Rightarrow DF=DC\)

\(\Rightarrow\Delta CDF\) cân tại D