Cho a, b thỏa mãn sin(2a+b)=3sinb .Chứng minh rằng tan(a+b)=2tana
Chứng minh:
Nếu sin(2a + b) = 3sinb; cos(a + b) khác 0 thì tan(a + b) = 2tana.
\(sin\left(2a+b\right)=3sinb\)
\(\Leftrightarrow sin\left(a+a+b\right)=3sin\left(a+b-a\right)\)
\(\Leftrightarrow sina.cos\left(a+b\right)+cosa.sin\left(a+b\right)=3sin\left(a+b\right)cosa-3cos\left(a+b\right)sina\)
\(\Leftrightarrow4cos\left(a+b\right).sina=2sin\left(a+b\right)cosa\)
\(\Leftrightarrow\dfrac{2sina}{cosa}=\dfrac{sin\left(a+b\right)}{cos\left(a+b\right)}\)
\(\Leftrightarrow2tana=tan\left(a+b\right)\)
bài 1: Cho các số thực a, b, c thỏa mãn a+b−2c=0 và a2+b2−ca−cb=0.Chứng minh rằng a = b = c.
bài 2: Giả sử a, b là hai số thực phân biệt thỏa mãn a2+4a=b2+4b=1.
a) Chứng minh rằng a + b = −4.
b) Chứng minh rằng a3 + b3 = −76.
c) Chứng minh rằng a4 + b4 = 322.
Bài 1:
Ta có: a + b - 2c = 0
⇒ a = 2c − b thay vào a2 + b2 + ab - 3c2 = 0 ta có:
(2c − b)2 + b2 + (2c − b).b − 3c2 = 0
⇔ 4c2 − 4bc + b2 + b2 + 2bc − b2 − 3c2 = 0
⇔ b2 − 2bc + c2 = 0
⇔ (b − c)2 = 0
⇔ b − c = 0
⇔ b = c
⇒ a + c − 2c = 0
⇔ a − c = 0
⇔ a = c
⇒ a = b = c
Vậy a = b = c
Câu 2 : Tìm m để pt x2 - mx+m+8=0 có 2 nghiệm phân biệt cùng âm
Câu 3 : a/ Rút gọn biểu thức : P= 2sinx(cosx+cos3x+cos5x)
b/ Chứng minh rằng : nếu sin(2a+b)=3sinb thì tan (a+b) =2tana
Em học lớp 9 nên giúp được câu 2 thôi nha :)
\(pt:x^2-mx+m+8=0\)
\(\Delta=\left(-m\right)^2-4\left(m+8\right)=m^2-4m+32=\left(m-2\right)^2+28>0\forall m\)
⇒ pt luôn có 2 nghiệm phân biệt
Theo hệ thức Vi-et: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m+8\end{matrix}\right.\)
Để pt có 2 nghiệm phân biệt cùng âm thì:
\(\left\{{}\begin{matrix}\Delta>0\left(TM\right)\\P>0\\S< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 0\\m+8>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 0\\m>-8\end{matrix}\right.\Leftrightarrow-8< m< 0\)
3. a, P = 2 sinx ( cos x + cos 3x + cos 5x)
= 2 sinx . [ 2.cos3x.cos (-2x) + cos 3x]
= 2 sinx . [ cos 3x ( cos 2x + 1)]
= 2 sinx cos 3x . (2 cos x - 1 + 1)
= 4 sinx . cos x .cos 3x = 2 . sin2x .cos 3x
#mã mã#
Cho a,b>0 thỏa mãn a + b ≤ \(\dfrac{1}{2}\). Chứng minh rằng a + b + \(\dfrac{1}{a}\) + \(\dfrac{1}{b}\) ≥ \(\dfrac{17}{2}\)
Trước tiên, ta chứng minh \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) với \(a,b>0\) (*)
(*) \(\Leftrightarrow\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\), luôn đúng.
Vậy (*) được chứng minh. Dấu "=" xảy ra \(\Leftrightarrow a=b\)
\(\Rightarrow VT=a+b+\dfrac{1}{a}+\dfrac{1}{b}\ge a+b+\dfrac{4}{a+b}\)
Đặt \(a+b=t\left(0< t\le\dfrac{1}{2}\right)\)thì
\(VT\ge t+\dfrac{4}{t}\) \(=t+\dfrac{1}{4t}+\dfrac{15}{4t}\) (1)
Bây giờ ta sẽ chứng minh \(a+b\ge2\sqrt{ab}\) với \(a,b>0\) (**)
(**) \(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)
\(\Leftrightarrow\left(\sqrt{a}\right)^2-2\sqrt{a}\sqrt{b}+\left(\sqrt{b}\right)^2\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) (luôn đúng)
Vậy (**) được chứng minh. Dấu "=" xảy ra \(\Leftrightarrow a=b\)
Do đó từ (1) \(\Rightarrow VT\ge\left(t+\dfrac{1}{4t}\right)+\dfrac{15}{4t}\)
\(\ge2\sqrt{t.\dfrac{1}{4}t}+\dfrac{15}{4.\dfrac{1}{2}}\) (do \(0< t\le\dfrac{1}{2}\))
\(=\dfrac{17}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}t=a+b=\dfrac{1}{2}\\a=b\end{matrix}\right.\Leftrightarrow a=b=\dfrac{1}{4}\)
Ta có đpcm.
Cho các số thực a,b,c thỏa mãn
\(a^2+b^2+c^2=2\). Chứng minh rằng:
a + b + c ≤ 2 + abc
Cho các số thực không âm a,b,c thỏa mãn
\(a^2+b^2+c^2=8\). Chứng minh rằng:
\(a+b+c\le2+abc\)
Cho a,b là các số tự nhiên thỏa mãn a+5b chia hết cho 7. Chứng minh rằng 10a+b chia hết cho 7.
a+5b chia hết 7 thì a và b chia hết cho 7
vậy 10a +b chia hết 7
Cho a,b là các số tự nhiên thỏa mãn a+5b chia hết cho 7. Chứng minh rằng 10a+b chia hết cho 7
Ta có :
\(a+5b⋮7\)
\(\Leftrightarrow21a-a+5b-7b⋮7\)
\(\Leftrightarrow20a-2b⋮7\)
\(\Leftrightarrow2\left(10a-b\right)⋮7\)
Mà ( 2 ; 7 ) = 1
=> 10a - b chia hết cho 7
** Sai đề nhé bạn
Ta xét hiệu:
(10a + 50b) - (10a + b) = 10a + 50b - 10a - b
= 49b \(⋮\) 7
\(\Rightarrow\) (10a + 50b) - (10a + b) (1)
Theo bài ra: a + 5b \(⋮\) 7
\(\Rightarrow\) 10(a + 5b) \(⋮\) 7 (2)
Từ (1) và (2), suy ra:
10a + b \(⋮\) 7
Vậy nếu a + 5b chia hết cho 7 thì 10a + b cũng chia hết cho 7
Ta xét hiệu:
\(\left(10a+50b\right)-\left(10a+b\right)=10a+50b-10-b\)
\(=49b⋮7\)
\(\Rightarrow\left(10a+50b\right)-\left(10a+b\right)\) \(\left(1\right)\)
Theo bài ra:\(a+5b⋮7\)
\(\Rightarrow10\left(a+5b\right)⋮7\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\), suy ra:
\(10a+b⋮7\)
Vậy nếu \(a+5b\) chia hết cho 7 thì \(10a+b\) cũng chia hết cho 7.
Cho các số thực dương a;b;c;d thỏa mãn a ≤ b ≤ c ≤ d ≤ 2a. Chứng minh rằng:
\(\left(b+c+d\right)\left(\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)\)≤ 10
\(P=\left(b+c+d\right)\left(\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)=1+\frac{b}{c}+\frac{b}{d}+\frac{c}{b}+1+\frac{c}{d}+\frac{d}{b}+\frac{d}{c}+1\)
\(=3+\frac{b}{c}+\frac{b}{d}+\frac{c}{d}+\frac{c}{b}+\frac{d}{b}+\frac{d}{c}\)
Mặt khác do \(b\le c\le d\Rightarrow\left(d-c\right)\left(c-b\right)\ge0\)
\(\Leftrightarrow cd-bd-c^2+bc\ge0\Leftrightarrow bc+cd\ge c^2+bd\)
\(\Leftrightarrow\frac{bc+cd}{cd}\ge\frac{c^2+bd}{cd}\Leftrightarrow\frac{b}{d}+1\ge\frac{c}{d}+\frac{b}{c}\)
\(\frac{bc+cd}{bc}\ge\frac{c^2+bd}{bc}\Leftrightarrow\frac{d}{b}+1\ge\frac{c}{b}+\frac{d}{c}\)
\(\Leftrightarrow\frac{b}{d}+\frac{d}{b}+2\ge\frac{b}{c}+\frac{c}{d}+\frac{c}{b}+\frac{d}{c}\)
\(\Leftrightarrow2\left(\frac{b}{d}+\frac{d}{b}\right)+2\ge\frac{b}{c}+\frac{b}{d}+\frac{c}{d}+\frac{c}{b}+\frac{d}{b}+\frac{d}{c}=P\)
Mà \(a\le b\le d\le2a\Rightarrow\left\{{}\begin{matrix}\frac{1}{2}\le\frac{b}{d}\le1\\1\le\frac{d}{b}\le2\end{matrix}\right.\)
\(\Rightarrow\left(\frac{b}{d}-1\right)\left(\frac{d}{b}-2\right)\ge0\Leftrightarrow1-2\frac{b}{d}-\frac{d}{b}+2\ge0\)
\(\Leftrightarrow\frac{b}{d}+\frac{d}{b}\le3-\frac{b}{d}\le3-\frac{1}{2}=\frac{5}{2}\)
\(\Rightarrow P\le2.\frac{5}{2}+2=7\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}b=c=a\\d=2a\end{matrix}\right.\)