Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phương mai
Xem chi tiết
meme
8 tháng 9 2023 lúc 13:12

Để tìm U1 và q, ta sử dụng hệ phương trình sau:

U1 + U6 = 165U3 + U4 = 60

Đầu tiên, ta sử dụng phương trình thứ hai để tìm U3: U3 = 60 - U4

Sau đó, thay giá trị của U3 vào phương trình thứ nhất: U1 + U6 = 165 U1 + (U3 + 3q) = 165 U1 + (60 - U4 + 3q) = 165 U1 - U4 + 3q = 105 (1)

Tiếp theo, ta sử dụng phương trình thứ nhất để tìm U6: U6 = 165 - U1

Thay giá trị của U6 vào phương trình thứ hai: U3 + U4 = 60 (60 - U4) + U4 = 60 60 = 60 (2)

Từ phương trình (2), ta thấy rằng phương trình không chứa U4, do đó không thể giải ra giá trị của U4. Vì vậy, không thể tìm được giá trị cụ thể của U1 và q chỉ từ hai phương trình đã cho.

Để tìm số hạng đầu và công bội của cấp số nhân, ta sử dụng các phương trình đã cho:

a. U4 - U2 = 72 U5 - U3 = 144

Đầu tiên, ta sử dụng phương trình thứ nhất để tìm U4: U4 = U2 + 72

Sau đó, thay giá trị của U4 vào phương trình thứ hai: U5 - U3 = 144 (U2 + 2q) - U3 = 144 U2 - U3 + 2q = 144 (3)

Từ phương trình (3), ta thấy rằng phương trình không chứa U2, do đó không thể giải ra giá trị của U2 và q chỉ từ hai phương trình đã cho.

b. U1 - U3 + U5 = 65 U1 + U7 = 325

Đầu tiên, ta sử dụng phương trình thứ hai để tìm U7: U7 = 325 - U1

Sau đó, thay giá trị của U7 vào phương trình thứ nhất: U1 - U3 + U5 = 65 U1 - U3 + (U1 + 6q) = 65 2U1 - U3 + 6q = 65 (4)

Từ phương trình (4), ta thấy rằng phương trình không chứa U3, do đó không thể giải ra giá trị của U1 và q chỉ từ hai phương trình đã cho.

c. U3 + U5 = 90 U2 - U6 = 240

Đầu tiên, ta sử dụng phương trình thứ hai để tìm U6: U6 = U2 - 240

Sau đó, thay giá trị của U6 vào phương trình thứ nhất: U3 + U5 = 90 U3 + (U2 - 240 + 4q) = 90 U3 + U2 - 240 + 4q = 90 U3 + U2 + 4q = 330 (5)

Từ phương trình (5), ta thấy rằng phương trình không chứa U2, do đó không thể giải ra giá trị của U2 và q chỉ từ hai phương trình đã cho.

d. U1 + U2 + U3 = 14 U1 * U2 * U3 = 64

Đầu tiên, ta sử dụng phương trình thứ nhất để tìm U3: U3 = 14 - U1 - U2

Sau đó, thay giá trị của U3 vào phương trình thứ hai: U1 * U2 * (14 - U1 - U2) = 64

Phương trình này có dạng bậc ba và không thể giải ra giá trị cụ thể của U1 và U2 chỉ từ hai phương trình đã cho.

Tóm lại, không thể tìm được giá trị cụ thể của số hạng đầu và công bội của cấp số nhân chỉ từ các phương trình đã cho.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 12 2019 lúc 5:28

Chọn B.

Ta có : u1 + u4 + u7 + u10 + u13 + u16 = 147

u1 + u1 + 3d + u1 + 6d + u1 + 9d + u1 + + 12d + u1 + 15d = 147

6 u1 + 45d = 147 2 u1 + 15d = 49

Ta có: u6 + u11 = u1 + 5d + u1 + 10d = 2u1 + 15d = 49

Ta có: u1 + u6 + u11 + u16 = u1 + u1 + 5d + u1 + 10d + u1 + 15d = 4u1 + 30d

 = 2(2u1 + 15d) = 2.49 = 98.

Nguyen Thi Thuy Duong
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 1 2022 lúc 10:01

\(\left\{{}\begin{matrix}u_1+d=3\\u_1+9d=-15\end{matrix}\right.\)  \(\Rightarrow\left\{{}\begin{matrix}u_1=\dfrac{21}{4}\\d=-\dfrac{9}{4}\end{matrix}\right.\)

\(S_{20}=\dfrac{21}{4}.20+\dfrac{19.20}{2}.\left(-\dfrac{9}{4}\right)=-\dfrac{645}{2}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 12 2019 lúc 2:11

Ta có:

Giải bài 9 trang 107 sgk Đại số 11 | Để học tốt Toán 11

Lấy (2) chia (1) theo vế với vế ta được q = 2 thế vào (1):

(1) ⇔ 2u1(1 + 8 - 4) = 10 ⇔ u1 = 1

Vậy u1 = 1 và q = 2

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 10 2019 lúc 7:48

u 1   =   3 ,   d   =   2   h o ặ c   u 1   =   − 17 ,   d   =   2 .

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 6 2017 lúc 6:43

u 1   =   36 ,   d   =   − 13

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 1 2018 lúc 13:36

u 1   =   1 ,   d   =   3

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 9 2019 lúc 10:39

Chọn đáp án A

Ta có:  u 5 = u 1 + 4 d = 3 + 4 . 2 = 11

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 12 2017 lúc 9:19

Chọn đáp án A

Ta có:

u 5 = u 1 + 4 d = 3 + 4 . 2 = 11

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 6 2019 lúc 13:40

Đáp án A

u 2 − u 3 + u 5 = 10 u 4 + u 6 = 26 ⇒ u 1 + 3 d = 10 2 u 1 + 8 d = 26 ⇒ u 1 = 1 d = 3 ⇒ S = 2023736