Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
My
Xem chi tiết
Phạm Tuấn Đạt
9 tháng 2 2019 lúc 21:38

\(\Rightarrow x^2+y^2\ge2\sqrt{x^2y^2}=2xy\)

\(\Rightarrow1\ge2xy\)

\(\Rightarrow\frac{1}{2}\ge xy\)

Có \(x+y\ge2\sqrt{xy}\ge2\sqrt{\frac{1}{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)

Vậy \(Min_{x+y}=\sqrt{2}\)

Làm tương tự với max

kudo shinichi
9 tháng 2 2019 lúc 21:58

Thêm đk: x,y>0

Tìm max:

Áp dụng BĐT bunhiacopxki ta có:

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

\(\Leftrightarrow2\ge\left(x+y\right)^2\)

\(\Leftrightarrow\sqrt{2}\ge x+y\)

Dấu " = " xảy ra <=> x=y

KL:...............................

tth_new
10 tháng 2 2019 lúc 6:47

Tìm Max nhá:

\(x^2+y^2=1\Leftrightarrow\left(x+y\right)^2-2xy=1\)

Suy ra \(\left(x+y\right)^2=1+2xy\)

Lại có: \(1=x^2+y^2\ge2xy\)

Suy ra \(\left(x+y\right)^2=1+2xy\le1+1=2\Leftrightarrow x+y\le\sqrt{2}\)

Dấu "=" xảy ra khi \(x=y=\sqrt{\frac{1}{2}}\)

Ê đạt: cái của bạn làm là tìm max chứ đâu phải min?

ghdoes
Xem chi tiết
Thu hương Phạm
Xem chi tiết
Tin Trần Thị
Xem chi tiết
CookieGuy
Xem chi tiết
dung2005 nguyenminh
Xem chi tiết
DTD2006ok
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 1 2021 lúc 18:27

Bài này chỉ có min, không có max của A nhé bạn

Muốn có max thì x;y;z phải không âm

dia fic
Xem chi tiết
Akai Haruma
4 tháng 1 2021 lúc 19:08

Lời giải:

Tìm min:

Áp dụng BĐT AM-GM:

$x^2+y^2+z^2\geq \frac{(x+y+z)^2}{3}=\frac{6^2}{3}=12$

Vậy $A_{\min}=12$. Giá trị này đạt tại $x=y=z=2$

--------------

Tìm max:

$A=x^2+y^2+z^2=(x+y+z)^2-2(xy+yz+xz)=36-2(xy+yz+xz)$

Vì $x,y,z\geq 0\Rightarrow xy+yz+xz\geq 0$

$\Rightarrow A=36-2(xy+yz+xz)\leq 36$

Vậy $A_{\max}=36$. Giá trị này đạt tại $(x,y,z)=(0,0,6)$ và hoán vị.

Nguyễn Tuấn Khôi
Xem chi tiết