Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nam Thanh Long
Xem chi tiết
alibaba nguyễn
22 tháng 5 2017 lúc 11:19

\(\frac{x^2}{2y}+\frac{y^2}{2x}+\frac{y^2}{2z}+\frac{z^2}{2y}+\frac{z^2}{2x}+\frac{x^2}{2z}\ge\frac{\left(2x+2y+2z\right)^2}{4\left(x+y+z\right)}=x+y+z\)

Minh Phương
Xem chi tiết
Siêu Nhân Lê
1 tháng 11 2016 lúc 21:51

ngu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleuchó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa

肖赵战颖
Xem chi tiết
Quốc Bảo
Xem chi tiết
Kuro Kazuya
9 tháng 2 2017 lúc 13:51

\(\frac{x^3}{2x+3y+5z}+\frac{y^3}{2y+3z+5x}+\frac{z^3}{2z+3x+5y}\)

\(\Leftrightarrow\frac{x^4}{2x^2+3xy+5xz}+\frac{y^4}{2y^2+3zy+5xy}+\frac{z^4}{2z^2+3xz+5yz}\)

Áp dụng bất đẳng thức cộng mẫu số

\(\Rightarrow\frac{x^4}{2x^2+3xy+5xz}+\frac{y^4}{2y^2+3yz+5xy}+\frac{z^4}{2z^2+3xz+5yz}\ge\frac{\left(x^2+y^2+z^2\right)^2}{2x^2+2y^2+2z^2+8xy+8yz+8xz}\)

\(\Leftrightarrow\frac{x^4}{2x^2+3xy+5xz}+\frac{y^4}{2y^2+3yz+5xy}+\frac{z^4}{2z^2+3xz+5yz}\ge\frac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)}\)

Xét \(\frac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)}\)

Áp dụng bất đẳng thức Cauchy cho 3 bộ số thực không âm

\(\Rightarrow\left\{\begin{matrix}x^2+y^2\ge2\sqrt{x^2y^2}=2xy\\y^2+z^2\ge2\sqrt{y^2z^2}=2yz\\x^2+z^2\ge2\sqrt{x^2z^2}=2xz\end{matrix}\right.\)

Cộng từng vế:

\(\Rightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\)

\(\Rightarrow xy+yz+xz\le x^2+y^2+z^2\)

\(\Rightarrow8\left(xy+yz+xz\right)\le8\left(x^2+y^2+z^2\right)\)

\(\Rightarrow2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)\le10\left(x^2+y^2+z^2\right)\)

\(\Rightarrow\frac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{10\left(x^2+y^2+z^2\right)}=\frac{x^2+y^2+z^2}{10}\)

Ta có: \(x^2+y^2+z^2\ge\frac{1}{3}\)

\(\Rightarrow\frac{x^2+y^2+z^2}{10}\ge\frac{1}{30}\)

\(\Rightarrow\frac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)}\ge\frac{1}{30}\)

\(\frac{x^4}{2x^2+3xy+5xz}+\frac{y^4}{2y^2+3yz+5xy}+\frac{z^4}{2z^2+3xz+5yz}\ge\frac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)}\)

\(\Rightarrow\frac{x^4}{2x^2+3xy+5xz}+\frac{y^4}{2y^2+3yz+5xy}+\frac{z^4}{2z^2+3xz+5yz}\ge\frac{1}{30}\)

\(\Leftrightarrow\frac{x^3}{2x+3y+5z}+\frac{y^3}{2y+3z+5x}+\frac{z^3}{2z+3x+5y}\ge\frac{1}{30}\) ( đpcm )

Điệp Trần
11 tháng 2 2017 lúc 14:12

bucminh chịu chết

Trần Minh Phương
Xem chi tiết
Mr Lazy
8 tháng 8 2016 lúc 22:06

+\(x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}=3\)

+\(3+2\left(xy+yz+zx\right)=x^2+y^2+z^2+2\left(xy+yz+zx\right)=\left(x+y+z\right)^2\le9\)

\(\Rightarrow B=\frac{1}{1+\sqrt{3+2\left(xy+yz+zx\right)}}\ge\frac{1}{1+3}=\frac{1}{4}\)

+\(A=\frac{x^2}{y+2z}+\frac{y^2}{z+2x}+\frac{z^2}{x+2y}=\frac{x^4}{x^2y+2zx^2}+\frac{y^4}{y^2z+2xy^2}+\frac{z^4}{z^2x+2yz^2}\)

\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2y+y^2z+z^2x+2\left(xy^2+yz^2+zx^2\right)}\)

Áp dụng bđt Bunhiacopxki

\(x^2y+y^2z+z^2x=x.xy+y.yz+z.zx\le\sqrt{x^2+y^2+z^2}.\sqrt{x^2y^2+y^2z^2+z^2x^2}\)

\(\le\sqrt{x^2+y^2+z^2}.\sqrt{\frac{\left(x^2+y^2+z^2\right)^2}{3}}=3\)

(áp dụng \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\))

Tương tự: \(xy^2+yz^2+zx^2\le3\)

\(\Rightarrow B\ge\frac{3^2}{3+2.3}=1\)

\(VT=A+B\ge1+\frac{1}{4}=\frac{5}{4}=VP\)

Cool Boy
8 tháng 8 2016 lúc 21:56

dvdfhfeye5

Nguyễn Thu Thủy
Xem chi tiết
%Hz@
Xem chi tiết
Trí Tiên亗
27 tháng 2 2020 lúc 11:05

Bài này áp dụng BĐT này nhé , với x,y > 0 ta có :

\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) ( Cách chứng minh thì chuyển vế quy đồng nhé )

Áp dụng vào bài toán ta có :

\(\frac{1}{2x+y+z}=\frac{1}{4}\left(\frac{4}{\left(x+y\right)+\left(z+x\right)}\right)\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{z+x}\right)=\frac{1}{16}\left(\frac{4}{x+y}+\frac{4}{z+x}\right)\)

                                                           \(\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{x}\right)\)

\(\Rightarrow\frac{1}{2x+y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{x}\right)\)

Tương tự ta có :

\(\frac{1}{x+2y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\frac{1}{x+y+2z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}\right)\)

Do đó : \(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{16}\left(\frac{4}{x}+\frac{4}{y}+\frac{4}{z}\right)=\frac{1}{4}\left(x+y+z\right)=1\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{3}{4}\) (đpcm)

Khách vãng lai đã xóa
trần gia bảo
27 tháng 2 2020 lúc 11:13

Ta có: \(\frac{1}{2x+y+z}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\le\frac{1}{16}\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Tương tự: \(\frac{1}{x+2y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\right)\)

                  \(\frac{1}{x+y+2z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{2}{z}\right)\)

Cộng vế theo vế có: \(VT\le\frac{1}{16}\left(\frac{4}{x}+\frac{4}{y}+\frac{4}{z}\right)=1\)

Khách vãng lai đã xóa
Tran Le Khanh Linh
12 tháng 4 2020 lúc 16:19

cách 1:

với a,b>0 ta có: 4ab < (a+b)2 \(\Leftrightarrow\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)

dấu "=" xảy ra khi a=b

áp dụng kết quả của trên ta có:

\(\frac{1}{2x+y+z}\le\frac{1}{4}\left[\frac{1}{2x}+\frac{1}{4}\left(\frac{1}{y}+\frac{1}{z}\right)\right]=\frac{1}{8}\left(\frac{1}{x}+\frac{1}{2y}+\frac{1}{z}\right)\left(1\right)\)

tương tự \(\hept{\begin{cases}\frac{1}{x+2y+z}\le\frac{1}{4}\left[\frac{1}{2y}+\frac{1}{4}\left(\frac{1}{x}+\frac{1}{z}\right)\right]=\frac{1}{8}\left(\frac{1}{y}+\frac{1}{2x}+\frac{1}{2z}\right)\left(2\right)\\\frac{1}{x+y+2z}\le\frac{1}{4}\left[\frac{1}{2z}+\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\right]=\frac{1}{8}\left(\frac{1}{z}+\frac{1}{2y}+\frac{2}{2x}\right)\left(3\right)\end{cases}}\)

vậy \(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=1\)

thấy trong các bđt (1)(2)(3) thì dấu "=" xảy ra khi x=y=z=\(\frac{3}{4}\)

cách 2:

áp dụng bđt 1\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)và bđt Cosi cho các số dương ta có:

\(2x+y+z=\left(x+y\right)+\left(x+z\right)\ge2\left(\sqrt{xy}+\sqrt{xyz}\right)\)

do đó: \(\frac{1}{2x+y+z}\le\frac{1}{2}\left(\frac{1}{\sqrt{xy}+\sqrt{xz}}\right)\le\frac{1}{8}\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{xz}}\right)\)

tương tự: \(\hept{\begin{cases}\frac{1}{2x+y+z}\le\frac{1}{8}\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}\right)\\\frac{1}{x+y+2z}\le\frac{1}{8}\left(\frac{1}{\sqrt{xz}}+\frac{1}{\sqrt{yz}}\right)\end{cases}}\)

cộng theo từng vế 3 bđt trên ta được:

\(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{4}\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\right)\left(3\right)\)

từ (3), (4) => đpcm

cách 3:

mặt khác từ bđt Cosi cho 4 số dương hoặc bđt Bunhiacopsky

\(\left(x+x+y+z\right)\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge4\sqrt[4]{x^2\cdot yz}\ge4\sqrt[4]{\frac{1}{x^2yz}}=16\)

\(\Rightarrow\frac{1}{2x+y+z}\le\frac{1}{16}\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

tương tự \(\hept{\begin{cases}\frac{1}{x+2y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\right)\\\frac{1}{x+y+2z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{2}{z}\right)\end{cases}}\)

cộng 3 vế của bđt trên ta được đpcm

Khách vãng lai đã xóa
Nguyễn Quốc Vũ Hoàng
Xem chi tiết
Kiệt Nguyễn
17 tháng 7 2020 lúc 20:08

\(BĐT\Leftrightarrow\frac{2-2xy}{2+x^2+y^2}+\frac{2x^2-2y}{1+2x^2+y^2}+\frac{2y^2-2x}{1+x^2+2y^2}\ge0\)

\(\Leftrightarrow1-\frac{2-2xy}{2+x^2+y^2}+1-\frac{2x^2-2y}{1+2x^2+y^2}+1-\frac{2y^2-2x}{1+x^2+2y^2}\le3\)

\(\Leftrightarrow\frac{\left(x+y\right)^2}{2+x^2+y^2}+\frac{\left(y+1\right)^2}{1+2x^2+y^2}+\frac{\left(x+1\right)^2}{1+x^2+2y^2}\le3\)(*)

Theo bất đẳng thức Bunyakovsky dạng phân thức: \(\frac{\left(x+y\right)^2}{2+x^2+y^2}\le\frac{x^2}{1+x^2}+\frac{y^2}{1+y^2}\)(1); \(\frac{\left(y+1\right)^2}{1+2x^2+y^2}\le\frac{y^2}{x^2+y^2}+\frac{1}{x^2+1}\)(2); \(\frac{\left(x+1\right)^2}{1+x^2+2y^2}\le\frac{x^2}{x^2+y^2}+\frac{1}{y^2+1}\)(3)

Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(\frac{\left(x+y\right)^2}{2+x^2+y^2}+\frac{\left(y+1\right)^2}{1+2x^2+y^2}+\frac{\left(x+1\right)^2}{1+x^2+2y^2}\le\)\(\left(\frac{x^2}{x^2+y^2}+\frac{y^2}{x^2+y^2}\right)+\left(\frac{1}{y^2+1}+\frac{y^2}{y^2+1}\right)+\left(\frac{1}{x^2+1}+\frac{x^2}{x^2+1}\right)=3\)

Như vậy (*) đúng

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi x = y = 1

Khách vãng lai đã xóa
Tran Le Khanh Linh
17 tháng 7 2020 lúc 20:04

\(\frac{1-xy}{2+x^2+y^2}+\frac{x^2-y^2}{1+2x^2+y^2}+\frac{y^2-x}{1+x^2+2y^2}\ge0\)

\(\Leftrightarrow\frac{1-xy+3x^2-2y^2-2y^2+x}{\left(1+x^2+y^2\right)}\ge0\)

\(\Leftrightarrow\frac{2\left(1+x^2+y^2\right)+x^2}{1+x^2+y^2}\ge0\)

Vì x2 và y2 >0

\(\Rightarrow2+\frac{x^2}{1+x^2+y^2}\ge0\)(luôn đúng)

Khách vãng lai đã xóa
tth_new
18 tháng 7 2020 lúc 10:25

Bạn nhatt quynhh xem lại bài bạn đi nha. Phô diễn kỹ thuật tí:

Bài này đúng với mọi x, y là các số thực. Thật vậy\(,\)

Bất đẳng thức đã cho tương đương với: (vô thống kê hỏi đáp mình xem LaTex nha, tại olm bị lỗi LaTex)

${\frac {1}{378}}\, \left( x+y-2 \right) ^{4} \left( 29\,{x}^{2}+29\,{y
}^{2}+20 \right) \\+{\frac {1}{378}}\, \left( y+1-2\,x \right) ^{4}
 \left( 20\,{x}^{2}+29\,{y}^{2}+29 \right) +{\frac {1}{378}}\, \left( 
1+x-2\,y \right) ^{4} \left( 29\,{x}^{2}+20\,{y}^{2}+29 \right) \\+\frac{1}{14}
\, \left( {x}^{2}y+x{y}^{2}+{x}^{2}-6\,xy+{y}^{2}+x+y \right) ^{2} \geqslant 0$

Khách vãng lai đã xóa
quản đức phú
Xem chi tiết
Kiệt Nguyễn
7 tháng 6 2020 lúc 9:57

Áp dụng bất đẳng thức AM - GM cho các bộ bốn số không âm, ta được: \(LHS=\frac{2x^2+y^2+z^2}{4-yz}+\frac{2y^2+z^2+x^2}{4-zx}+\frac{2z^2+x^2+y^2}{4-xy}\)\(=\frac{x^2+x^2+y^2+z^2}{4-yz}+\frac{y^2+y^2+z^2+x^2}{4-zx}+\frac{z^2+z^2+x^2+y^2}{4-xy}\)\(\ge\frac{4x\sqrt{yz}}{4-yz}+\frac{4y\sqrt{zx}}{4-zx}+\frac{4z\sqrt{xy}}{4-xy}\)

Như vậy, ta cần chứng minh: \(\frac{4x\sqrt{yz}}{4-yz}+\frac{4y\sqrt{zx}}{4-zx}+\frac{4z\sqrt{xy}}{4-xy}\ge4xyz\)\(\Leftrightarrow\frac{\sqrt{yz}}{yz\left(4-yz\right)}+\frac{\sqrt{zx}}{zx\left(4-zx\right)}+\frac{\sqrt{xy}}{xy\left(4-xy\right)}\ge1\)

Theo bất đẳng thức Cauchy-Schwarz, ta có: \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\ge\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2\)

\(\Rightarrow\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\le3\)

Đặt \(\left(\sqrt{xy};\sqrt{yz};\sqrt{zx}\right)\rightarrow\left(a;b;c\right)\). Khi đó \(\hept{\begin{cases}a,b,c>0\\a+b+c\le3\end{cases}}\)

và ta cần chứng minh \(\frac{a}{a^2\left(4-a^2\right)}+\frac{b}{b^2\left(4-b^2\right)}+\frac{c}{c^2\left(4-c^2\right)}\ge1\)

Xét BĐT phụ:  \(\frac{x}{x^2\left(4-x^2\right)}\ge-\frac{1}{9}x+\frac{4}{9}\left(0< x\le1\right)\)(*)

Ta có: (*)\(\Leftrightarrow\frac{\left(x-1\right)^2\left(x^2-2x-9\right)}{9x\left(x-2\right)\left(x+2\right)}\ge0\)(Đúng với mọi \(x\in(0;1]\))

Áp dụng, ta được: \(\frac{a}{a^2\left(4-a^2\right)}+\frac{b}{b^2\left(4-b^2\right)}+\frac{c}{c^2\left(4-c^2\right)}\ge-\frac{1}{9}\left(a+b+c\right)+\frac{4}{9}.3\)

\(\ge-\frac{1}{9}.3+\frac{4}{3}=1\)

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi a = b = c = 1

Khách vãng lai đã xóa

1. Chứng minh với mọi số thực a, b, c ta có 2a2+b2+c2\(\ge\)2a(b+c)

Chứng minh:

Ta có 2a2+b2+c2=(a2+b2)+(a2+c2)

Áp dụng bđt cauchy ta có

(a2+b2)+(a2+c2)\(\ge\)2ab+2ac=2a(b+c)

Kiệt Nguyễn
21 tháng 8 2020 lúc 20:33

Đặt vế trái của bất đẳng thức là \(K\)

Với x, y, z > 0, ta có: \(yz\le\frac{\left(y+z\right)^2}{4}< \frac{\left(x+y+z\right)^2}{4}=\frac{9}{4}\Rightarrow4-yz>0\)

Tương tự ta cũng có \(4-zx>0,4-xy>0\)

Ta viết lại bất đẳng thức cần chứng minh thành \(\frac{x^2+y^2+x^2+z^2}{xyz\left(4-yz\right)}+\frac{x^2+y^2+y^2+z^2}{xyz\left(4-zx\right)}+\frac{z^2+y^2+x^2+z^2}{xyz\left(4-xy\right)}\ge4\)

Áp dụng bất đẳng thức Cauchy ta có \(K\ge\frac{2xy+2xz}{xyz\left(4-yz\right)}+\frac{2xy+2yz}{xyz\left(4-zx\right)}+\frac{2xz+2yz}{xyz\left(4-xy\right)}\)\(=2\left[\frac{y+z}{yz\left(4-yz\right)}+\frac{z+x}{zx\left(4-zx\right)}+\frac{x+y}{xy\left(4-xy\right)}\right]\)\(=2\left[\frac{1}{z\left(4-yz\right)}+\frac{1}{x\left(4-zx\right)}+\frac{1}{y\left(4-xy\right)}\right]+\)      \(2\left[\frac{1}{y\left(4-yz\right)}+\frac{1}{z\left(4-zx\right)}+\frac{1}{x\left(4-xy\right)}\right]\) 

Lại áp dụng bất đẳng thức Cauchy cho các bộ ba số dương, ta có\(\frac{1}{z\left(4-yz\right)}+\frac{1}{x\left(4-zx\right)}+\frac{1}{y\left(4-xy\right)}\ge\frac{3}{\sqrt[3]{xyz\left(4-yz\right)\left(4-zx\right)\left(4-xy\right)}}\)

\(\frac{1}{y\left(4-yz\right)}+\frac{1}{z\left(4-zx\right)}+\frac{1}{x\left(4-xy\right)}\ge\frac{3}{\sqrt[3]{xyz\left(4-yz\right)\left(4-zx\right)\left(4-xy\right)}}\)

Do đó \(K\ge\frac{12}{\sqrt[3]{xyz\left(4-yz\right)\left(4-zx\right)\left(4-xy\right)}}=\frac{12\sqrt[3]{3}}{\sqrt[3]{3xyz\left(4-yz\right)\left(4-zx\right)\left(4-xy\right)}}\)

Mặt khác ta lại có: \(3xyz\left(4-yz\right)\left(4-zx\right)\left(4-xy\right)\le\left(\frac{3xyz+12-xy-yz-zx}{4}\right)^4\)

Ta có bất đẳng thức quen thuộc \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}=3\Leftrightarrow\frac{xy+yz+zx}{xyz}\ge3\)\(\Leftrightarrow3xyz-xy-yz-zx\le0\)

Suy ra \(3xyz\left(4-yz\right)\left(4-zx\right)\left(4-xy\right)\le3^4=81\) \(\Rightarrow\sqrt[3]{3xyz\left(4-yz\right)\left(4-zx\right)\left(4-xy\right)}\le3\sqrt[3]{3}\)

Do đó \(K\ge\frac{12\sqrt[3]{3}}{3\sqrt[3]{3}}=4\)

Như vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi x = y = z = 1

Khách vãng lai đã xóa