3x^2+7x-10=0
Giai phương trình sau:
a,\(x^2+3x-10=0\) b,\(3x^2-7x+1=0\)
c,\(3x^2-7x+8=0\) d,\(4x^2-12x+9=0\)
e,\(3x^2+7x+2=0\) h,\(x^2-4x+1=0\)
i,\(2x^2-6x+1=0\) j, \(3x^2+4x-4=0\)
a) Ta có: \(x^2+3x-10=0\)
\(\Leftrightarrow x^2+5x-2x-10=0\)
\(\Leftrightarrow x\left(x+5\right)-2\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
Vậy: S={-5;2}
b) Ta có: \(3x^2-7x+1=0\)
\(\Leftrightarrow3\left(x^2-\dfrac{7}{3}x+\dfrac{1}{3}\right)=0\)
mà 3>0
nên \(x^2-\dfrac{7}{3}x+\dfrac{1}{3}=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{7}{6}+\dfrac{49}{36}-\dfrac{37}{36}=0\)
\(\Leftrightarrow\left(x-\dfrac{7}{6}\right)^2=\dfrac{37}{36}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{7}{6}=\dfrac{\sqrt{37}}{6}\\x-\dfrac{7}{6}=-\dfrac{\sqrt{37}}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{37}+7}{6}\\x=\dfrac{-\sqrt{37}+7}{6}\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{\sqrt{37}+7}{6};\dfrac{-\sqrt{37}+7}{6}\right\}\)
c) Ta có: \(3x^2-7x+8=0\)
\(\Leftrightarrow3\left(x^2-\dfrac{7}{3}x+\dfrac{8}{3}\right)=0\)
mà 3>0
nên \(x^2-\dfrac{7}{3}x+\dfrac{8}{3}=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{7}{6}+\dfrac{49}{36}+\dfrac{47}{36}=0\)
\(\Leftrightarrow\left(x-\dfrac{7}{6}\right)^2=-\dfrac{47}{36}\)(vô lý)
Vậy: \(x\in\varnothing\)
Giải phương trình
1) 16-8x=0
2) 7x+14=0
3) 5-2x=0
4) 3x-5=7
5) 8-3x=6
6) 8=11x+6
7)-9+2x=0
8) 7x+2=0
9) 5x-6=6+2x
10) 10+2x=3x-7
11) 5x-3=16-8x
12)-7-5x=8+9x
13) 18-5x=7+3x
14) 9-7x=-4x+3
15) 11-11x=21-5x
16) 2(-7+3x)=5-(x+2)
17) 5(8+3x)+2(3x-8)=0
18) 3(2x-1)-3x+1=0
19)-4(x-3)=6x+(x-3)
20)-5-(x+3)=2-5x
20) -5-(x + 3) = 2 - 5x ⇔ -5 - x - 3 = 2 -5x ⇔ 4x = 10 ⇔ x = \(\frac{5}{2}\)
Vậy...
1) 16 - 8x = 0 ⇔ 8(2 - x) = 0⇔ 2 - x = 0 ⇔ x = 2
Vậy phương trình có nghiệm là x = 2
(3x^2+7x-10)/x=0
Ta có :
\(\dfrac{\left(3x^2+7x-10\right)}{x}=0\), ĐKXĐ \(x\ne0\)
\(\Leftrightarrow3x^2+7x-10=0\)
\(\Leftrightarrow3x^2+7x-3-7=0\)
\(\Leftrightarrow3\left(x^2-1\right)+7\left(x-1\right)=0\)
\(\Leftrightarrow3\left(x-1\right)\left(x+1\right)+7\left(x-1\right)=0\)
\(\Leftrightarrow\left(3x+10\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+10=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-10\\x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{10}{3}\left(TM\right)\\x=1\left(TM\right)\end{matrix}\right.\)
Vậy \(x=-\dfrac{10}{3}\) hoặc x = 1
\(ĐKXĐ:x\ne0\)
\(\dfrac{3x^2+7x-10}{x}=0\)
\(\Leftrightarrow3x^2+7x-10=0\)
\(\Leftrightarrow3x^2-3x+10x-10=0\)
\(\Leftrightarrow3x\left(x-1\right)+10\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x+10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\3x+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{10}{3}\end{matrix}\right.\) ( t/m)
Vậy pt có tập nghiệm \(S=\left\{1;-\dfrac{10}{3}\right\}\)
1).(4-3x)(10-5x)=0 2).(7-2x)(4+8x)=0 3).(9-7x)(11-3x)=0
4).(7-14x)(x-2)=0 5).(\(\dfrac{7}{8}\)-2x)(3x+\(\dfrac{1}{3}\))=0 6).3x-2x\(^2\)
7).5x+10x\(^2\)
1.
<=> \(\left[{}\begin{matrix}4-3x=0\\10-5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=2\end{matrix}\right.\)
2.
<=>\(\left[{}\begin{matrix}7-2x=0\\4+8x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
3.
<=>\(\left[{}\begin{matrix}9-7x=0\\11-3x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{7}\\x=\dfrac{11}{3}\end{matrix}\right.\)
4.
<=>\(\left[{}\begin{matrix}7-14x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=2\end{matrix}\right.\)
5.
<=>\(\left[{}\begin{matrix}\dfrac{7}{8}-2x=0\\3x+\dfrac{1}{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{16}\\x=-\dfrac{1}{9}\end{matrix}\right.\)
6,7. ko đủ điều kiện tìm
Giải phương trình bậc 3:
a)2x^3+5x^2-3x-10=0
b)x^3-2x^2+7x+66=0
c)x^3+3x-4=0
d)x^3+7x^2-48=0
e)4x^3+4x^2-x+14=0
f)3x^3-4x^2+5x+500=0
Tìm x
a) \(3x^2+12x-66=0\)
b)\(9x^2-30x+225=0\)
c)\(x^2+3x-10=0\)
d)\(3x^2-7x+1=0\)
e) \(3x^2-7x+8=0\)
a)
a)
=> 3(x + 2)2 - 12 - 66 = 0
=> 3(x + 2)2 - 78 = 0
=> 3(x + 2)2 = 78
=> (x + 2)2 = 26
=> x = \(\sqrt{26}-2\)
b)
=> (3x - 5)2 - 25 + 225 = 0
=> (3x - 5)2 + 200 = 0
=> (3x - 5)2 = -200
9x2 - 30x + 225 không có ngiệmc)=> (x + 1,5)2 - 2,25 - 10 = 0
=> (x + 1,5)2 - 12,25 = 0
=> (x + 1,5)2 = 12, 25
=> x + 1,5 = 3,5
=> x = 2
d)=> 3(x - \(\dfrac{7}{6}\))2 - \(\dfrac{49}{12}\) + 1 = 0
=> 3(x - \(\dfrac{7}{6}\))2 - \(\dfrac{37}{12}\) = 0
=> 3(x - \(\dfrac{7}{6}\))2 = \(\dfrac{37}{12}\)
=> (x - \(\dfrac{7}{6}\))2 = \(\dfrac{37}{36}\)
=> x = \(\dfrac{\sqrt{37}}{6}+\dfrac{7}{6}=\dfrac{\sqrt{37}+7}{6}\)
e)
=> 3(x - \(\dfrac{7}{6}\))2 - \(\dfrac{49}{12}\)+ 8 = 0
=> 3(x - \(\dfrac{7}{6}\))2 + \(\dfrac{47}{12}\) = 0
=> 3(x - \(\dfrac{7}{6}\))2 = \(-\dfrac{47}{12}\)
KL : Không có ngiệm
Tìm x biết:
a) 2x2 - 3x - 2 = 0.
b) 3x2 - 7x - 10 = 0.
c) 2x2 - 5x + 3 = 0.
a) 2x2 - 3x - 2 = 0.
<=> (2x + 1)(x - 2) = 0
<=> 2x + 1 = 0 hoặc x - 2 = 0
<=> x = -1/2 hoặc x = 2
b) 3x2 - 7x - 10 = 0.
<=> (x + 1)(3x - 10) = 0
<=> x = -1 hoặc x = 10/3
c) 2x2 - 5x + 3 = 0.
<=> (x - 1)(2x - 3) = 0
<=> x = 1 hoặc x = 3/2
a) 3x2+12x-66=0
b) 9x2-30x+225=0
c) x2+3x-10=0
d) 3x2-7x+1=0
e) 3x2+7x+2=0
f) 4x2-12x+9=0
g) 3x2+7x+2=0
h) x2-4x+1=0
i) 2x2-6x+1=0
j) 3x2+4x-4=0
Cảm ơn bạn giải giúp mình rất nhiều .
a)
\(3x^2+12x-66=0\)
\(\Leftrightarrow x^2+4x-22=0\)
\(\Leftrightarrow x^2+4x+4=26\Leftrightarrow (x+2)^2=26\)
\(\Rightarrow x+2=\pm \sqrt{26}\Rightarrow x=-2\pm \sqrt{26}\)
b)
\(9x^2-30x+225=0\)
\(\Leftrightarrow (3x)^2-2.3x.5+25+200=0\)
\(\Leftrightarrow (3x-5)^2=-200< 0\) (vô lý nên pt vô nghiệm)
c)
\(x^2+3x-10=0\)
\(\Leftrightarrow x^2-2x+5x-10=0\)
\(\Leftrightarrow x(x-2)+5(x-2)=0\Leftrightarrow (x+5)(x-2)=0\)
\(\Rightarrow x=-5\) hoặc $x=2$
d)
$3x^2-7x+1=0$
$\Leftrightarrow 3(x^2-\frac{7}{3}x)+1=0$
$\Leftrightarrow 3(x^2-\frac{7}{3}x+\frac{7^2}{6^2})=\frac{37}{12}$
$\Leftrightarrow 3(x-\frac{7}{6})^2=\frac{37}{12}$
$\Leftrightarrow (x-\frac{7}{6})^2=\frac{37}{36}$
$\Rightarrow x-\frac{7}{6}=\frac{\pm \sqrt{37}}{6}$
$\Rightarrow x=\frac{7\pm \sqrt{37}}{6}$
e)
$3x^2+7x+2=0$
$\Leftrightarrow 3(x^2+\frac{7}{3}x+\frac{7^2}{6^2})=\frac{25}{12}$
$\Leftrightarrow 3(x+\frac{7}{6})^2=\frac{25}{12}$
$\Leftrightarrow (x+\frac{7}{6})^2=\frac{25}{36}$
$\Rightarrow x+\frac{7}{6}=\pm \frac{5}{6}$
$\Rightarrow x=\frac{-1}{3}$ hoặc $x=-2$
f)
$4x^2-12x+9=0$
$\Leftrightarrow (2x)^2-2.2x.3+3^2=0$
$\Leftrightarrow (2x-3)^2=0\Rightarrow 2x-3=0\Rightarrow x=\frac{3}{2}$
g) Trùng câu e
h)
$x^2-4x+1=0$
$\Leftrightarrow x^2-4x+4-3=0$
$\Leftrightarrow (x-2)^2=3\Rightarrow x-2=\pm \sqrt{3}$
$\Rightarrow x=2\pm \sqrt{3}$
i)
$2x^2-6x+1=0$
$\Leftrightarrow 2(x^2-3x+\frac{3^2}{2^2})=\frac{7}{2}$
$\Leftrightarrow 2(x-\frac{3}{2})^2=\frac{7}{2}$
$\Leftrightarrow (x-\frac{3}{2})^2=\frac{7}{4}$
$\Rightarrow x-\frac{3}{2}=\pm \frac{\sqrt{7}}{2}$
$\Rightarrow x=\frac{3\pm \sqrt{7}}{2}$
j)
$3x^2+4x-4=0$
$\Leftrightarrow 3x^2+6x-2x-4=0$
$\Leftrightarrow 3x(x+2)-2(x+2)=0$
$\Leftrightarrow (x+2)(3x-2)=0$
$\Rightarrow x+2=0$ hoặc $3x-2=0$
$\Rightarrow x=-2$ hoặc $x=\frac{2}{3}$
Giải các phương trình tích sau
a) 3x2 + 12x – 66 = 0 b) 9x2 – 30x + 225 = 0
c) x2 + 3x – 10 = 0 d) 3x2 – 7x + 1 = 0
e) 3x2 – 7x + 8 = 0 f) 4x2 – 12x + 9 = 0
g) 3x2 + 7x + 2 = 0 h) x2 – 4x + 1 = 0
i) 2x2 – 6x + 1 = 0 j) 3x2 + 4x – 4 = 0