So sánh A = ( 20182019 + 20172019 ) 2020 và B = ( 20182020 + 20172020 ) 2019
Cho A = 2018 2019 + 2019 2020 và B = 2018 + 2019 2019 + 2020 . So sánh A và B.
A = 2018 2019 + 2019 2020 > 2018 2020 + 2019 2020 = 2018 + 2019 2020 > 2018 + 2019 2019 + 2020 = B
Vậy A > B
Ta có:
\(\frac{2018+2019}{2019+2020}=\frac{2018}{2019+2020}+\frac{2019}{2019+2020}\)
\(\frac{2018}{2019}>\frac{2018}{2019+2020}\)
\(\frac{2019}{2020}>\frac{2019}{2019+2020}\)
Vậy: A>B
So sánh : A = 2017 2018 + 2018 2019 v à B = 2017 + 2018 2018 + 2019
A = 2017 2018 + 2018 2019 > 2017 2019 + 2018 2019 = 2017 + 2018 2019 > 2017 + 2018 2018 + 2019 = B
So sánh : A = 2017 2018 + 2018 2019 v à B = 2017 + 2018 2018 + 2019
A = 2017 2018 + 2018 2019 > 2017 2019 + 2018 2019 = 2017 + 2018 2019 > 2017 + 2018 2018 + 2019 = B
So sánh: A = 2017 2018 + 2018 2019 và B = 2017 + 2018 2018 + 2019
Ta có
A = 2017 2018 + 2018 2019 > 2017 2019 + 2018 2019 = 2018 + 2018 2019
Mà 2017 + 2018 2019 > 2017 + 2018 2018 + 2019 = B
Nên A > B
So sánh A và B
A = \(\left(2020^{2019}+2019^{2019}\right)^{2020}\)
B = \(\left(2020^{2020}+2019^{2020}\right)^{2019}\)
Ta có: \(A=\left(2020^{2019}+2019^{2019}\right)^{2020}\)
\(=\left(2019^{2019}+2020^{2019}\right)^{2019}\cdot\left(2019^{2019}+2020^{2019}\right)\)
\(\Leftrightarrow\dfrac{A}{B}=\dfrac{\left(2019^{2019}+2020^{2019}\right)^{2019}\cdot\left(2019^{2019}+2020^{2019}\right)}{\left(2020^{2020}+2019^{2020}\right)^{2019}}\)
\(\Leftrightarrow\dfrac{A}{B}=\dfrac{2019^{2019}+2020^{2019}}{2019+2020}>1\)
\(\Leftrightarrow A>B\)
so sánh A=(19^2019+20^2019)^2020 và B =(19^2020+20^2020)^2019
so sánh: A=2019^2019+1/2019^2020+1 và B=2019^2020+1/2019^2021+1
Vì 2019 + 2020 < 2019 + 2021 nên A < B
So sánh hai phân số
A=2017/2018+2018/2019+2019/2020 và B=(2017+2018+2019)/(2018+2019+2020)
A=2017/2018+2020/2019
B=2018/2019+2021/2020
So sánh A và B
Xét 2017 /2018 và 2018/2019
1-2017/2018=1/2018
1-2018/2019=1/2019
mà 1/2018>1/2019=>2017/2018<2018/2019
Tương tự có:2020/2019>2021/2020
=>2017/2018+2010/2019<2018/2019+2021/2020
So sánh : \(A=\dfrac{2019^{2020}+1}{2019^{2019}-1}\) và \(B=\dfrac{2019^{2019}+1}{2019^{2018}-1}\)
Lời giải:
Ta có:
\(A+1=\frac{2019^{2019}+2019^{2020}}{2019^{2019}-1}=\frac{2019^{2019}.2020}{2019^{2019}-1}\)
\(B+1=\frac{2019^{2019}+2019^{2018}}{2019^{2018}-1}=\frac{2019^{2018}.2020}{2019^{2018}-1}\) \(=\frac{2019^{2019}.2020}{2019^{2019}-2019}>\frac{2019^{2019}.2020}{2019^{2019}-1}\)
$\Rightarrow B+1>A+1$
$\Rightarrow B>A$