Câu 30. Tìm giá trị lớn nhất của y = \(\frac{x^2}{\left(x^2+1\right)^3}\)
Câu 1: cho biểu thức :
\(A=\frac{3x+3}{x^3+x^2+x+1}\)
a) Tìm giá trị của x để A nhận giá trị ngyên
b) Tìm giá trị lớn nhất của A
Câu 2:
a) Chứng minh rằng : \(\left(x+2\right)^2>1+x+x^2+x^3=y^3\)với mọi giá trị x
b) Giải phương trình tìm nghiệm nguyên : \(1+x+x^2+x^3=y^3\)
Câu 3: Giải phương trình: \(\left(x^2+3x+2\right)\left(x^2+11x+30\right)-60=0\)
Câu 1
Giải phương trình \(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{2}{x^2+13x+42}\)=\(\frac{1}{18}\)
Câu 2 Tìm giá trị nhỏ nhất A=x2-2xy+2y2-4y+5
Câu 3 Tìm giá trị nhỏ nhất
A=x2-2xy+2y2-4y+5
Tìm giá trị lớn nhất
B=\(\frac{3\left(x+1\right)}{x^3+x^2+x+1}\)
Câu 1: Tự làm :D
Câu 2: \(A=\left(x-y\right)^2+\left(y-2\right)^2+1\ge1\)
Đẳng thức xảy ra khi x = y = 2
Vậy...
Câu 3:
a) Trùng với câu 2
b) ĐK:x khác -1
\(B=\frac{3\left(x+1\right)}{x^2\left(x+1\right)+\left(x+1\right)}=\frac{3\left(x+1\right)}{\left(x^2+1\right)\left(x+1\right)}\)
\(=\frac{3}{x^2+1}\le\frac{3}{0+1}=3\)
Đẳng thức xảy ra khi x = 0
Làm nốt cái câu 1 và đầy đủ cái câu 2:v
\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)
Làm nốt nha.Lười quá:((
2
\(A=x^2-2xy+2y^2-4y+5\)
\(A=\left(x-2xy+y^2\right)+\left(y^2-4y+4\right)+1\)
\(A=\left(x-y\right)^2+\left(y-2\right)^2+1\)
\(A\ge1\)
Dấu "=" xảy ra tại \(x=y=2\)
1. Tìm giá trị nhỏ nhất của các biểu thức
a) C= \(x^2+3\left|y-2\right|-1\)
b)D= x+|x|
2. Tìm giá trị lớn nhất của các biểu thức.
a) A= \(5-\left|2x-1\right|\)
b)B= \(\frac{1}{\left|x-2\right|+3}\)
3. Tìm giá trị lớn nhất của biểu thức \(C=\frac{x+2}{\left|x\right|}\)với x là số nguyên.
2.
a/\(A=5-I2x-1I\)
Ta thấy: \(I2x-1I\ge0,\forall x\)
nên\(5-I2x-1I\le5\)
\(A=5\)
\(\Leftrightarrow5-I2x-1I=5\)
\(\Leftrightarrow I2x-1I=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)
b/\(B=\frac{1}{Ix-2I+3}\)
Ta thấy : \(Ix-2I\ge0,\forall x\)
nên \(Ix-2I+3\ge3,\forall x\)
\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)
\(B=\frac{1}{3}\)
\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)
\(\Leftrightarrow Ix-2I+3=3\)
\(\Leftrightarrow Ix-2I=0\)
\(\Leftrightarrow x=2\)
Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)
Tìm giá trị nhỏ nhất của biểu thức: (x+2)^2 + (y-3)^2 + 1
tìm giá trị lớn nhất của biểu thức: \(\frac{1}{\left(x-2\right)^2+2}\)
1 )Vì \(\left(x+2\right)^2\ge0;\left(y-3\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2+\left(y-3\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2+\left(y-3\right)^2+1\ge1\)
Dấu "=: xảy ra <=> \(\orbr{\begin{cases}\left(x+2\right)^2=0\\\left(y-3\right)^2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\y=3\end{cases}}}\)
Vậy ........
2 ) \(\frac{1}{\left(x-2\right)^2+2}\ge\frac{1}{2}\)
Dấu "=" xảy ra <=> x = 2
Vậy ..........
1/ Cho x + y = 2
Chứng minh xy nhỏ hơn hoặc bằng 1.
2/
a) Tìm giá trị lớn nhất của \(A=3-\left(\frac{4}{9}x+\frac{2}{15}\right)^6.\)
b) Tìm giá trị lớn nhất của \(B=2,25-\frac{1}{4}\left(1+2x\right)^2.\)
c) tìm giá trị lớn nhất của \(C=\frac{1}{3+\frac{1}{2}\left(2x-3\right)^4}.\)
Mik đg cần gấp ai làm nhanh và đúng nhất mik sẽ tik cho 3 cái!
1/ Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{2^2}{4}=\frac{4}{4}=1\)
Dấu "=" xảy ra khi x=y=1
Máy mình bị lỗi nên ko nhìn được các bài tiếp theo
Chúc bạn học tốt :)
Ta có : x+y=2 => x=2-y. Thay vào bt ta đc : xy= (2-y).y = 2y -y^2
Vì y^2 >= 0 =>2y-y^2 nhỏ hơn hoặc bằng 0
1.
a,Tìm giá trị nhỏ nhất của biểu thức \(C=\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2-10\)
b, Tìm giá trị lớn nhất của biểu thức \(D=\frac{5}{\left(2x-1\right)^2+3}\)
2. Cho biểu thức \(E=\frac{3-x}{x-1}\). Tìm các giá trị nguyên của x để
a, E có giá trị nguyên
b, E có giá trị nhỏ nhất
trình bày cách làm nữa nha . làm dc 1 câu cũng dc nha
1. Trong tất cả các nghiệm\(\left(x,y\right)\) của ft \(2x+3y=1\) hãy chỉ ra các nghiệm để tổng \(3x^2+2y^2\) có giá trị lớn nhất.
2. Hai số dương x,y thỏa mãn \(\frac{2}{x}+\frac{3}{y}=6\). Tìm giá trị nhỏ nhất của tổng \(x+y\)
3. Tìm giá tị lớn nhất của hàm số \(y=x\left(1-x\right)^3\) với \(x\in\left[0;1\right]\).
1/ Đề đúng phải là \(3x^2+2y^2\) có giá trị nhỏ nhất nhé.
Áp dụng BĐT BCS , ta có
\(1=\left(\sqrt{2}.\sqrt{2}x+\sqrt{3}.\sqrt{3}y\right)^2\le\left[\left(\sqrt{2}\right)^2+\left(\sqrt{3}\right)^2\right]\left(2x^2+3y^2\right)\)
\(\Rightarrow2x^2+3y^2\ge\frac{1}{5}\). Dấu "=" xảy ra khi \(\begin{cases}\frac{\sqrt{2}x}{\sqrt{2}}=\frac{\sqrt{3}y}{\sqrt{3}}\\2x+3y=1\end{cases}\) \(\Leftrightarrow x=y=\frac{1}{5}\)
Vậy \(3x^2+2y^2\) có giá trị nhỏ nhất bằng 1/5 khi x = y = 1/5
2/ Áp dụng bđt AM-GM dạng mẫu số ta được
\(6=\frac{\left(\sqrt{2}\right)^2}{x}+\frac{\left(\sqrt{3}\right)^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}\)
\(\Rightarrow x+y\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{6}\)
Dấu "=" xảy ra khi \(\begin{cases}\frac{\sqrt{2}}{x}=\frac{\sqrt{3}}{y}\\\frac{2}{x}+\frac{3}{y}=6\end{cases}\) \(\Rightarrow\begin{cases}x=\frac{2+\sqrt{6}}{6}\\y=\frac{3+\sqrt{6}}{6}\end{cases}\)
Vậy ......................................
a) Rút gọn rồi tìm giá trị của x để biểu thức: \(\frac{x^2}{x-2}.\left(\frac{x^2+4}{x}-4\right)+3\) có giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó.
b) Rút gọn rồi tìm giá trị của x để biểu thức: \(\frac{^{x^2}}{x-2}.\left(1-\frac{^{x^2}}{x+2}\right)-\frac{x^2+6x+4}{x}\)có giá trị lớn nhất. Tìm giá trị lớn nhất đo.
Câu 1: Giá trị x=... thì biểu thức \(D=\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2-\left|8x-1\right|+2016\) đạt giá trị lớn nhất.
Câu 2: Tập hợp giá trị x nguyên thỏa mãn \(\left|2x-7\right|+\left|2x+1\right|\le8\)
Câu 3: Giá trị lớn nhất của \(B=3-\sqrt{x^2-25}\)
Câu 4: Số phần tử của tập hợp \(\left\{x\in Z\left|x-2\right|\le9\right\}\)
Câu 5: Giá trị nhỏ nhất của biểu thức D= \(\frac{-3}{x^2+1}-2\)
Câu 6: Có bao nhiêu cặp số (x;y) thỏa mãn đẳng thức xy=x+y
Câu 7: Gọi A là tập hợp các số nguyên dương sao cho giá trị của biểu thức: \(\frac{2\sqrt{x}+3}{\sqrt{x}-1}\) là nguyên. Số phần tử của tập hợp A là...
Câu 8: Cho x;y là các số thỏa mãn \(\left(x+6\right)^2+\left|y-7\right|=0\) khi đó x+y=...
Câu 9: Phân số dương tối giản có mẫu khác 1, biết rằng tổng của tử và mẫu số bằng 18, nó có thể viết dưới dạng số thập phân hữu hạn. Có... phân số thỏa mãn
Cho x,y là các số thực thuộc (0;1) thỏa mãn \(\frac{\left(x^3+y^3\right)\left(x+y\right)}{xy}=\left(1-x\right)\left(1-y\right)\)
Tìm giá trị lớn nhất của biểu thức \(P=\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}+4xy-x^2-y^2\)