Cho tam giác ABC nhọn với hai đường cao BD, CE cắt nhau tại H. M là trung điểm của HA và I là giao điểm của DE với HA. Chứng minh I là trực tâm của tam giác ABC
cho tam giác nhọn ABC, BD và CE là hai đường cao cắt nhau tại H. gọi M là trung điểm của cạnh BC, N là điểm trên tia đối của tia HA. đường thẳng qua N vuông góc với MH cắt AB,AC lần lượt tại I,K. chứng minh rằng N là trung điểm của IK
Mn giúp mình câu d vs ak!
Cho tam giác ABC có 3 góc nhọn, đường tròn tâm O có đường kính BC cắt AB, AC lần lượt tại E và D; BD và CE cắt nhau tại H
a/ Chứng minh: H là trực tâm của tam giác ABC.
b/ Gọi F là giao điểm của hai đường thẳng AH và BC. Chứng minh : AE . AB = AH. AF = AD. AC
c/ Gọi I là trung điểm của AH. Chứng tỏ có đường tròn tâm I đi qua 4 điểm A ,E, H, D.
d/ Chứng minh : góc EAH= góc EDH= góc ECB, suy ra IE, ID là tiếp tuyến của (O) và OD, OE là tiếp tuyến của (I).
Cho tam giác ABC nhọn có góc BAC bằng 45 độ. Hai đường cao BD và CE cắt nhau tại H. Gọi I là trung điểm của DE. Chứng minh rằng trọng tâm G của tam giác ABC nằm trên HI.
1) Tam giác ABC cân tại A (A<90 độ), cacá dường cao BD và CE. Kẻ đường vuông góc DH từ D đến BC. Đường thẳng đi qua H và song song với CE cắt DE ở K
a) Gọi O là giao điểm BD và HK. CMR: OB=OH
b) CMR: BKDH là hình chữ nhật
2) Cho tam giác nhọn ABC, trực tâm H. Gọi D là điểm dối xứng H qua trung điểm M của BC. Gọi I là trung điểm AD. CMR: I là giao điểm của các đường trung trực của tam giác ABC
Cho tam giác ABC nhọn có AB< AC, các đường cao BD và CE cắt nhau tại H, I là trung điểm của BC. Gọi K là điểm đối xứng với H qua I, M là điểm đối xứng với H qua đường thẳng BC.
a, Các tứ giác BHCK,BCKM là hình gì?
b, Gọi O là trung điểm của AK. Chứng minh O là giao điểm cảu ba đường trung trưc của tam giác ABC
c, Chứng minh rằng AK vuông góc với DE
1. Cho tam giác nhọn ABC ( AB≠AC) có các đường cao BD, CE cắt nhau tại H. Gọi O là giao điểm ba đường trung trực của tam giác ABC. M là trung điểm của BC. Gọi F là điểm đối xứng với A qua O.
a) Chứng minh: F đối xứng với H qua M.
b) HO cắt AM tại G. Chứng minh G là trọng tâm của tam giác ABC.
c) Giả sử AH=BC. Chứng minh HG đi qua trung điểm của đoạn thẳng DE.
2. Cho 2021 điểm phân biệt trong đó không có ba điểm nào thẳng hàng nằm trong hình chữ nhật (kể cả trên các cạnh) có kích thước 10\(\times\)101cm. Chứng minh rằng tồn tại một tam giác có 3 đỉnh lấy từ 2021 điểm đã cho có diện tích không vượt quá 1 cm2.
1
a) ta có A đối xứng với F qua O => O là trung điểm của AF
=> BO là trung tuyến của AF (1)
=> CO là trung tuyến của AF (2)
ta lại có O là giao điểm của 3 đường trung trực của tam giác ABC
=> OA = OB =OC (3)
từ 1-2-3 => Góc ABF = góc ACF = 90
=> AB vuông góc với FB
AC vuông góc với FC
mà CH vuông góc AB => CH // BF
BH vuông góc với AC => BH//CF
Xét tứ giác BHCF có
CH // BF
BH//CF
=> HBFC là hình bình hành (dhnb) có HF và BC là 2 đường chéo
M là trung điểm của BC
=> M là trung điểm của HF => 3 điểm H,M,F thẳng hàng ; HM =FM
=> H đối xứng với F qua M
b) Xét tam giác AHF có M là trung điểm của HF O là trung điểm AF
=> OM là đường trung bình
=> OM =1/2AH <=> AH/OM=2
vì H là giao điểm của 2 đường cao BD và CE nên H là trực tâm => AH vuông góc BC
ta lại có OM vuông góc với BC ( M là trung điểm của BC ; O là giao 3 đường trung tuyến => OM là đường trung tuyến của BC )
=> OM // AH => góc HAG =góc GMO (2 góc so le trong)
xét tam giác AHG và tam giác MOG
có :góc HGA =góc MGO (2 góc đối đỉnh)
góc HAG =góc GMO (cmt)
=> đồng dạng (gg) => AH /OM = AG/MG =2
<=> AG=2MG <=> AM = AG + MG =3MG
<=> AG/AM =2/3 mà AM là tiếp tuyến của BC ( m là trnug điểm BC)
=> G là trọng tâm của tma giác ABC
Bài 4: (3 điểm)
Cho tam giác ABC có ba góc nhọn (AB < AC), hai đường cao BD và CE của tam giác ABC cắt nhau tại H.
1) Chứng minh ABD đồng dạng với ACE. Từ đó suy ra AB.AE = AC.AD
2) Chứng minh ADE đồng dạng với ABC
3) Gọi I là giao điểm của DE và CB, M là trung điểm của BC. Chứng minh: ID.IE = IM2 – MC2.
4) Biết BC = 15, tính giá trị biểu thức P = BH.BD + CH.CE.
cho tam giác ABC nhọn có AB<AC, các đường cao BD và CE cắt nhau tại H, I là trung điểm của BC. gọi K là điểm đối xứng với H qua I, M là điểm đối xứng với H qua đường thẳng BC. a) các tứ giác BHCK, BCKM là hình gì? b) gọi O là trung điểm của AK. chứng minh O là giao điểm của ba đường trung trực của tam giác ABC. c) CMR AK vuông góc với DE.
Mn giúp mk ik mai mk hc r <3
Thanks mn nh <3
Cho tam giác ABC, đường cao AH. Dựng hai điểm D,E sao cho AB là trung trực của HD, AC là trung trực của HE. Gọi I,K lần lượt là giao điểm của DE với AB, AC. Chứng minh:
a. HA là phân giác của góc IHK.
b. O là giao điểm ba đường phân giác của tam giác HIK ( O là giao điểm của BK và CI ).
c. O là trực tâm của tam giác ABC.