Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thảo Vũ
Xem chi tiết
Nguyễn Hoàng Minh
27 tháng 8 2021 lúc 18:58

Ta có: \(2x^2+xy+2y^2=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x^2+2xy+y^2\right)=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x+y\right)^2\)

Theo BĐT Bunhacopxky: \(\left(x^2+y^2\right)\left(1+1\right)\ge\left(x+y\right)^2\Rightarrow\dfrac{3}{2}\left(x^2+y^2\right)\ge\dfrac{3}{4}\left(x+y\right)^2\\ \Rightarrow2x^2+xy+2y^2=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x+y\right)^2\ge\dfrac{5}{4}\left(x+y\right)^2\\ \Rightarrow\sqrt{2x^2+xy+2y^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)

Chứng minh tương tự:

\(\sqrt{2y^2+yz+2z^2}\ge\dfrac{\sqrt{5}}{2}\left(y+z\right)\\ \sqrt{2z^2+xz+2x^2}\ge\dfrac{\sqrt{5}}{2}\left(x+z\right)\)

Cộng vế theo vế, ta được: \(P\ge\sqrt{5}\left(x+y+z\right)=\sqrt{5}\cdot1=\sqrt{5}\)

Dấu "=" \(\Leftrightarrow x=y=z=\dfrac{1}{3}\) 

 

Lấp La Lấp Lánh
27 tháng 8 2021 lúc 18:58

Bạn tham khảo nhé

https://hoc24.vn/cau-hoi/cho-cac-so-duong-xyz-thoa-man-xyz1cmrcan2x2xy2y2can2y2yz2z2can2z2zx2x2can5.182722154737

Phạm Huy Bảo Long
Xem chi tiết
Dung Vu
Xem chi tiết
Trần Quang Huy
Xem chi tiết
Hoàng Phúc
6 tháng 8 2016 lúc 21:44

\(M=\frac{x^3+y^3+z^3-3xyz}{x^2+y^2+z^2-xy-yz-zx}\)

Đặt \(N=x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3-3x^2y-3xy^2+z^3-3xyz\)

\(=\left(x+y\right)^3+z^3-3x^2y-3xy^2-3xyz\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right).z+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-zx-yz+z^2\right)-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-zx-yz+z^2-3xy\right)\)


\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

Vậy \(M=\frac{N}{x^2+y^2+z^2-xy-yz-zx}=\frac{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)}{x^2+y^2+z^2-xy-yz-zx}=x+y+z=2016\)

(*) bn ghi sai đề 1 chỗ nhé:ở mẫu thức của M phải là  \(x^2+y^2+z^2-xy-yz-zx\) nhé!

Trang Cao
Xem chi tiết
Kurosaki Akatsu
10 tháng 7 2017 lúc 18:12

a) xy(x + y) + yz(z + y) + zx(z + x) + 3xyz

= [xy(x + y) + xyz] + [yz(z + y) + xyz] + [zx(z + x) + xyz]

= xy(x + y + z) + yz(x + y + z) + zx(x + y + z)

= (xy + yz + zx)(x + y + z)

b) Vô câu hỏi tương tự 

Lê Quang Tuấn Kiệt
26 tháng 7 2017 lúc 19:22

a) xy(x + y) + yz(z + y) + zx(z + x) + 3xyz

= [xy(x + y) + xyz] + [yz(z + y) + xyz] + [zx(z + x) + xyz]

= xy(x + y + z) + yz(x + y + z) + zx(x + y + z)

= (xy + yz + zx)(x + y + z)

b) tương tự 

Vy 7A1 Vũ Nguyễn Khánh
Xem chi tiết
Akai Haruma
29 tháng 10 2023 lúc 16:26

Biểu thức này không có giá trị cụ thể. Bạn xem lại đề.

Nguyễn Mai Linh
Xem chi tiết
Trần Đức Thắng
30 tháng 7 2015 lúc 16:48

     xy( x+ y) + yz(y+z) + xz(x+z) + 3xyz

=   xy(x+y) + xyz + yz(y+z) +  xyz + xz(x+z) + xyz

= zy(x+y+z) + yz(x + y + z) + xz ( x+y+z)

 = ( x+ y +z )( xy + yz + zx) 

Trần Quốc Hoàn
Xem chi tiết

Đáp án:

P=±36

Giải thích các bước giải:

Ta có:

x2+y2+z2=16xy−yz+zx=−10⇒(x2+y2+z2)−2.(xy−yz+zx)=16−2.(−10)⇔x2+y2+z2−2xy+2yz−2zx=36⇔(x2−2xy+y2)+z2+2yz−2zx=36⇔(x−y)2+2z(y−x)+z2=36⇔(x−y)2−2.(x−y).z+z2=36⇔(x−y−z)2=36⇔x−y−z=±6P=x3−y3−z3−3xyz=(x3−3x2y+3xy2−y3)−z3+3x2y−3xy2−3xyz=(x−y)3−z3+3x2y−3xy2−3xyz=[(x−y)−z].[(x−y)2+(x−y).z+z2]+3xy(x−y−z)=(x−y−z).(x2−2xy+y2+xz−yz+z2+3xy)=(x−y−z).(x2+y2+z2+xy−yz+zx)Trường hợp 1: x−y−z=6⇒P=6.(16+(−10))=36Trường hợp 2: x−y−z=−6⇒P=(−6).(16+(−10))=−36

Vậy P=±36.

Khách vãng lai đã xóa
Mai Vân
14 tháng 7 2021 lúc 8:44

MÌNH CHỈ BIẾT LÀM B7 THÔI NHA

P= 811^3+ 812^3+815^3+3.811.812.(-815)=  31694

K ĐÚNG HỘ TỚ NHA

Khách vãng lai đã xóa
Hoàng Khôi Phong  ( ɻɛɑm...
14 tháng 7 2021 lúc 8:50

???

???

???

???

Khách vãng lai đã xóa
Trần Vương Quốc Đạt
Xem chi tiết
Vân Nguyễn Thị
Xem chi tiết
ILoveMath
20 tháng 11 2021 lúc 15:23

\(\dfrac{xy}{x+y}=\dfrac{yz}{y+z}=\dfrac{zx}{z+x}\\ \Rightarrow\dfrac{x+y}{xy}=\dfrac{y+z}{yz}=\dfrac{z+x}{zx}\\ \Rightarrow\dfrac{1}{y}+\dfrac{1}{x}=\dfrac{1}{z}+\dfrac{1}{y}=\dfrac{1}{x}+\dfrac{1}{z}\\ \Rightarrow\dfrac{1}{x}=\dfrac{1}{y}=\dfrac{1}{z}\\ \Rightarrow x=y=z\)

\(\Rightarrow P=\dfrac{xy+yz+zx}{x^2+y^2+z^2}=\dfrac{x^2+x^2+x^2}{x^2+x^2+x^2}=1\)