Tìm x,y biết:
(x - 2)^ 2012 + | y^2 - 9|^2014 =0
Tìm x,y biết:
(x-2)^2012+\(\left|y^2-9\right|\)^2014=0
Vì \(\left(x-2\right)^{2012}\ge0\forall x\\ \left|y^2-9\right|^{2014}\ge0\forall y\)
Nên (x-2)^2012+∣y^2−9∣^2014=0
\(\Leftrightarrow\begin{cases}\left(x-2\right)^{2012}=0\\\left|y^2-9\right|^{2014}=0\end{cases}\)
\(\Leftrightarrow\begin{cases}x-2=0\\y^2-9=0\end{cases}\)
\(\Leftrightarrow\begin{cases}x=2\\y^2=9\end{cases}\)
\(\Leftrightarrow\begin{cases}x=2\\y=\pm3\end{cases}\)
tìm x,y biết
\(\left(x-2\right)^{2012}\)+\(\left|y^2-9\right|^{2014}\)=0
\(x=2\)
\(y=3\)
\(\Rightarrow x\cdot y=2\cdot3=6\)
Câu 1: Tìm x, y, z biết:
(3x-5)^2010+(y-1)^2012+(x-z)^2014=0
Câu 2: tìm x, y thuộc N biết:
116-y^2=7(x-2013)^2
1.Tìm x,y biết :
( x-2)2012+I y2-9I2014= 0
Ta có: (x - 2)2012 + | y2 - 9 |2014 = 0
=> (x - 2)2012 = 0 và | y2 - 9 |2014 = 0
+) ( x - 2 )2012 = 0
=> (x - 2)2012 = 02012
=> x-2 = 0 => x = 2
+) | y2 - 9 |2014 = 0
=> | y2 - 9 |2014 = 02014
=> | y2 - 9 | = 0
=> y2 - 9 = 0
=> y2 = 9
=> y = 3 hoặc y = -3
Vậy..........
vậy(x-2)\(^{2012}\) =0;(y\(^2\) -9)\(^{2014}\) =0
=>x-2=0 y\(^2\) -9=0
x =0+2 y\(^2\) =0+9
x =2 y\(^2\) =9
y\(^2\) =3\(^2\)
=>y=3
Tìm x
( x - 2 )2012 + | y2 - 9 |2014 = 0
( x - 2 )2012 + | y2 - 9 |2014 = 0
\(\Rightarrow\orbr{\begin{cases}x-2=0\\y^2-9=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=2\\x=-3;3\end{cases}}\)
Vậy x=2;3;-3
tim x va y
(x-2)2012+|y-9|2014=0
Ta có: \(\left(x-2\right)^{2012}\ge0\forall x\)
\(\left|y-9\right|^{2014}\ge0\forall y\)
\(\Rightarrow\left(x-2\right)^{2012}+\left|y-9\right|^{2014}=0\Leftrightarrow\left(x-2\right)^{2012}=\left|y-9\right|^{2014}=0\)
\(\Rightarrow x-2=y-9=0\)
\(\Rightarrow x=2\)và \(y=9\)
Vậy x = 2; y = 9
\(\left(x+\frac{2}{3}\right)^{2012}+\left|y-\frac{1}{4}\right|^{2000}+\left(x-y-z\right)^{2014}=0\)
\(\Leftrightarrow\hept{\begin{cases}x+\frac{2}{3}=0\\y-\frac{1}{4}=0\\x-y-z=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-\frac{2}{3}\\y=\frac{1}{4}\\z=-\frac{11}{12}\end{cases}}\).
1 chia 2 bằng bao nhiêu các bạn chỉ giúp mình với
tìm x,y: \(\left(x-2\right)^{2012}+\left|y^2-9\right|^{2014}=0\)
Vì (x-2)2012 ≥ 0
/y2 -9/2014 ≥ 0\
=> (x-2)2012 +/y2 -9/2014 = 0
=> (x-2)2012 = 0
/y2 - 9/ 2014 = 0
=> x-2 = 0
y2 -9 = 0
=> x = 0
y2 = 9
=> x = 0
y = 3 ; -3