Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Tâm Hảo
Xem chi tiết
Láoo Coverr
Xem chi tiết
Trịnh Thị Nhung
Xem chi tiết
Đặng Hoàng Uyên Lâm
Xem chi tiết
Lê Tài Bảo Châu
19 tháng 6 2019 lúc 10:34

\(\frac{\left(\frac{-5}{7}\right)^{n+1}}{\left(\frac{-5}{7}\right)^n}\)

\(=\frac{-5}{7}\)

T.Ps
19 tháng 6 2019 lúc 10:41

#)Giải :

\(\frac{\left(\frac{-5}{7}\right)^{n+1}}{\left(\frac{-5}{7}\right)^n}=\frac{\left(\frac{-5}{7}\right)^n\times\left(\frac{-5}{7}\right)}{\left(\frac{-5}{7}\right)^n}=\frac{-5}{7}\)

KAl(SO4)2·12H2O
19 tháng 6 2019 lúc 10:42

\(\frac{\left(\frac{-5}{7}\right)^{n+1}}{\left(\frac{-5}{7}\right)^n}=\left(\frac{-5}{7}\right)^{n+1-n}=\left(\frac{-5}{7}\right)^1=\frac{-5}{7}\)

Nguyễn Phương Nhi
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 2 2022 lúc 13:47

a: \(=\dfrac{\left(-\dfrac{5}{7}\right)^n}{\left(-\dfrac{5}{7}\right)^n\cdot\dfrac{-7}{5}}=1:\dfrac{-7}{5}=-\dfrac{5}{7}\)

b: \(=\dfrac{\dfrac{1}{4}^n}{\left(-\dfrac{1}{2}\right)^n}=\left(-\dfrac{1}{2}\right)^n\)

Quyên Lê
Xem chi tiết
Hoàng Bá Nhật
Xem chi tiết
Hoàng Bá Nhật
28 tháng 11 2019 lúc 10:43

chỗ \(\sqrt{n}-\sqrt{n+1}\)phải là \(\sqrt{n}+\sqrt{n+1}\)

Khách vãng lai đã xóa
Bùi Anh Tuấn
28 tháng 11 2019 lúc 11:21

a, Ta có

\(\frac{2}{\left(2n+1\right)\left(\sqrt{n}-\sqrt{n+1}\right)}=\frac{2\cdot\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(2n+1\right)\left(\sqrt{n}-\sqrt{n+1}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}\)

\(=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{2n+1}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{4n^2+4n+1}}< \frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{4n^2+4n}}\)

mà \(\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{4n^2+4n}}=\frac{2\cdot\left(\sqrt{n+1}-\sqrt{n}\right)}{2\sqrt{n\left(n+1\right)}}=\frac{\sqrt{n+1}}{\sqrt{n}\cdot\sqrt{n+1}}-\frac{\sqrt{n}}{\sqrt{n}\cdot\sqrt{n+1}}\)

\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

b, áp dụng bđt ta có

\(\frac{1}{3\left(1+\sqrt{2}\right)}+\frac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{4023\cdot\left(\sqrt{2011}+\sqrt{2012}\right)}< \frac{2011}{2013}\)

\(=\frac{1}{\left(2\cdot1+1\right)\left(1+\sqrt{2}\right)}+\frac{1}{\left(2\cdot2+1\right)\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{\left(2\cdot2011+1\right)\left(\sqrt{2011}-\sqrt{2012}\right)}\)

\(< 1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{2011}}-\frac{1}{\sqrt{2012}}\)..

\(=1-\frac{1}{\sqrt{2012}}=\frac{\sqrt{2012}-1}{\sqrt{2012}}=\frac{2011}{\sqrt{2012}\cdot\left(\sqrt{2012}+1\right)}\)

\(=\frac{2011}{2012+\sqrt{2012}}< \frac{2011}{2013}\)

Khách vãng lai đã xóa
Nguyễn Linh Chi
28 tháng 11 2019 lúc 12:01

Bạn Nhật sai đề bài

Câu. a. Dòng thứ nhất xuống dòng thứ 2. Em chú ý mẫu số sai rồi.

b. Công thức có số 2 trên tử số. Mà em ko đưa số 2 vào thì sao áp dụng dc công thức?

Khách vãng lai đã xóa
Nguyễn Văn Duy
Xem chi tiết
Ngu Ngu Ngu
27 tháng 3 2017 lúc 18:40

Ta có:

\(A=\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+\frac{7}{\left(3.4\right)^2}+...+\frac{2n+1}{\left[n\left(n+1\right)\right]^2}\)

\(=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{2n+1}{n^2\left(n+1\right)^2}\)

\(=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{2n+1}{n^2\left(n+1\right)^2}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+...+\frac{2n+1}{n^2}-\frac{2n+1}{\left(n+1\right)^2}\)

\(=1-\frac{2n+1}{\left(n+1\right)^2}\)

Vậy \(A=\frac{2n+1}{\left(n+1\right)^2}\)

Vũ Xuân Phương
28 tháng 3 2017 lúc 14:56

SAI RỒI ĐÁP ÁN LÀ N^2/(N+1)^2

Huy Cao
Xem chi tiết