giai phuong trinh: x^3-7x+6=0
giai phuong trinh x^4-7x^3+14x^2-7x+1=0
chỗ cuối là -1 chứ
giai phuong trinh x4+6x3+7x-6x+1=0
Giai phuong trinh :
2x^4-7x^3+9x^2-7x+2=0
\(2x^4-7x^3+9x^2-7x+2=0\)
\(\Leftrightarrow2x^4-x^3-6x^3+3x^2+6x^2-3x-4x+2=0\)
\(\Leftrightarrow\left(2x^4-x^3\right)-\left(6x^3-3x^2\right)+\left(6x^2-3x\right)-\left(4x-2\right)=0\)
\(\Leftrightarrow x^3\left(2x-1\right)-3x^2\left(2x-1\right)+3x\left(2x-1\right)-2\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x^3-3x^2+3x-2\right)=0\)(1)
Ta dễ thấy \(x^3-3x^2+3x-2>0\forall x\) nên để PT (1) có nghiệm \(\Leftrightarrow2x-1=0\Rightarrow x=\frac{1}{2}\)
Vậy nghiệp phương trình trên là \(S=\left\{\frac{1}{2}\right\}\)
Sủa chút : \(\left(2x-1\right)\left(x^3-3x^2+3x-2\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left[\left(x^3-2x^2\right)+\left(-x^2+2x\right)+\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(2x-1\right)\left[x^2\left(x-2\right)-x\left(x-2\right)+\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-2\right)\left(x^2-x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=2\end{cases}}\)
giai phuong trinh:6x3-7x2+16x-52=0
giai phuong trinh x^4-7x^3+14x^2-7x+1
Giai phuong trinh:
\(x^3-7x^2+15x-25=0\)
\(x^3-5x^2-2x^2+10x+5x-25=0\)
<=>\(x^2.\left(x-5\right)-2x\left(x-5\right)+5.\left(x-5\right)=\left(x-5\right)\left(x^2-2x+5\right)=0\)
<=>hoặc x-5=0 =>x=5
hoặc x^2-2x+5=0 (tự biến đổi ra ) <=>(x-1)^2=-4(loại)
Vậy nghiệm của pt là x=5
<=>\(x^3-7x^2+15x-25=\left(x-5\right)\left(x^2-2x+5\right)\)
=>\(x^2-2x+5=0\)
có biệt thức
\(\left(-2\right)^2-4\left(1.5\right)=-16\)
=>PT trên ko có nghiệm
=>x=5
giai phuong trinh va he phuong trinh sau:
x2 + 5x -6=0
b{4x+5y=3
{x-3y=5
giai mau giup toi nhe cac ban
Giai phuong trinh \(\sqrt{x-3}-\sqrt{7x-3}=\sqrt{5x-2}\)
ĐK:\(x\ge3\)
PT \(\Leftrightarrow\frac{-6x}{\sqrt{x-3}+\sqrt{7x-3}}=\sqrt{5x-2}\)(nhân liên hợp)
Đến đây ta có VT < 0 với mọi \(x\ge3\) mà VP > 0. Vậy pt vô nghiệm.
giai phuong trinh:2x3-x2-13x-6=0