Bài 1 : Cho tam giác ABC cân tại A.Từ B và C kẻ đường thẳng vuông góc với AB và AC chúng cắt nhau tại I
a, Chứng minh IB=IC
b,Lấy M là trung điểm của AI.Chuwngsminh MB=MC.
c,Chứng minh AI vuông góc với BC
Cho tam giác ABC cân tại A. Từ B và C kẻ đường thẳng vuông góc với AB và AC, chúng cắt nhau tại I
a) chứng minh IB=IC
b) lấy M là trung điểm của AI. Chứng minh MB=MC
c) chứng minh AI vuông góc với BC
Bài 7: Cho △ABC cân tại A. Từ B và C kẻ đường thẳng vuông góc với AB và AC, chúng cắt nhau tại I.
Chứng minh IB = IC.Lấy M là trung điểm của AI. Chứng minh MB = MC.Chứng minh AI vuông góc với BC.AI NHANH MK K CHOA !!!!!!!!!!!!!!!
1. Vì \(AB\perp BI\) (gt) \(\Rightarrow\widehat{ABI}=90^o\) (đ/n), \(AC\perp CI\) (gt) \(\Rightarrow\widehat{ACI}=90^o\) (đ/n)
Xét \(\Delta ABI\) và \(\Delta ACI\) có: \(AB=AC\) (vì \(\Delta ABC\) cân tại A từ giả thiết), \(AI\) chung, \(\widehat{ABI}=\widehat{ACI}\left(=90^o\right)\)
\(\Rightarrow\Delta ABI=\Delta ACI\left(c.g.c\right)\Rightarrow IB=IC\) (2 cạnh tương ứng) (đpcm)
2. Vì \(\Delta ABI=\Delta ACI\) (cm câu a) \(\Rightarrow\widehat{AIB}=\widehat{AIC}\) (2 góc tương ứng) \(\left(\widehat{MIB}=\widehat{MIC}\right)\)
Xét \(\Delta MBI\) và \(\Delta MCI\) có: \(IB=IC\) (cm câu a), \(MI\) chung, \(\widehat{MIB}=\widehat{MIC}\) (cmt)
\(\Rightarrow\Delta MBI=\Delta MCI\left(c.g.c\right)\Rightarrow MB=MC\) (2 cạnh tương ứng) (đpcm)
3. Vì \(\Delta ABI=\Delta ACI\) (cm câu a) \(\Rightarrow\widehat{BAI}=\widehat{CAI}\) (2 góc tương ứng) \(\Rightarrow AI\) là tia phân giác của \(\widehat{BAC}\) (đ/n)
Xét \(\Delta ABC\) có: \(AI\) là tia phân giác của \(\widehat{BAC}\) (cmt)
\(\Rightarrow AI\) là đường phân giác của \(\Delta ABC\) (đ/n), mà \(\Delta ABC\) cân tại A (gt)
\(\Rightarrow AI\) đồng thời là đường cao của \(\Delta ABC\) (t/c tam giác cân)
\(\Rightarrow AI\perp BC\) (đ/n) (đpcm)
cho tam giác ABC cân tại A . từ BvafC kẻ đường thẳng vuông góc với AB và AC , chúng cắt nhau tại I
a. chứng minh IB=IC
b.lấy M là trung điểm của AI . chứng minh MB=MC
c. chứng minh AI vuông góc với BC
ai trả lời sớm nhất mình sẽ cho (^-^)
Bạn tự kẻ hình nhé!!!
Thanhtam1207Đáp án:
Giải thích các bước giải:
a) Gọi H là chân đường vuông góc hạ từ đỉnh B
Gọi K là chân đường vuông góc hạ từ đinh C
Xét t.giác BKC và t.giác CHB:
Góc KCB = góc HBC (t.giác ABC cân)
Góc BKC = góc BHC (=900)
BC cạnh chung
=>T.giác BKC = t.giác CHB (ch - gn)
=>BK=CH (2 cạnh tương ứng)
Xét t.giác BIK và t.giác CIH có:
BK=CH (cmt)
Góc BIK = góc CIH (đối đỉnh)
Góc BKI = góc CHI (=900)
=>T.giác BIK = t.giác CIH (cgv - gnk)
=>IB=IC (2 cạnh t.ứ)
b)
Ta có: AB=AK+KB
AC=AH+HC
Mà AB=AC (t.giác ABC cân)
BK=CH (cmt)
=>AK=AH
Xét t.giác AKI và t.giác AHI
AI cạnh chung
AK=AH (cmt)
Góc AKI = góc AHI (=900)
=>T.giác AIK = t.giác AIH (ch - cgv)
=>Góc KAI = góc HAI (2 góc t.ứ)
Xét t.giác BAM và t.giác CAM có:
AM cạnh chung
Góc BAM = góc CAM (cmt)
AB=AC (gt)
=>T.giác BAM = t.giác CAM (c.g.c)
=>MB=MC (2 cạnh t.ứ)
c) Vì BH vuông góc với AC (gt)
CK vuông góc với AB (gt)
=>BH giao CK tại I
=>I là trực tâm của t.giác ABC
=>AI vuông góc với BC
Cho △ABC cân tại A. Kẻ BD vuông góc với AC tại D và CE vuông góc với AB tại E. Gọi I là giao điểm của BD và CE. a) Chứng minh: △ABD = △ACE. b) Chứng minh: IB = IC. c) Lấy M là trung điểm của AI. Chứng minh MB = MC. d) Chứng minh AI vuông góc với BC
( CẦN GẤP!!!!!!!!!!!!!!!!!!!!!!!!!!!)
Cho tam giác ABC có AB = AC Gọi M là trung điểm của BC. Qua B kẻ đường thẳng vuông góc với AB, qua C kẻ đường thẳng vuông góc với AC, chúng cắt nhau tại I. Chứng minh: a, Tam giác AMB = tam giác AMC b. AM vuông góc BC c, IB = IC d, 3 điểm A, M, I thẳng hàng.
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Ta có; ΔAMB=ΔAMC
=>\(\widehat{AMB}=\widehat{AMC}\)
mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)
nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)
=>AM\(\perp\)BC
c: Xét ΔABI vuông tại B và ΔACI vuông tại C có
AI chung
AB=AC
Do đó: ΔABI=ΔACI
=>IB=IC
d: Ta có: IB=IC
=>I nằm trên đường trung trực của BC(1)
Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là trung trực của BC(2)
Từ (1) và (2) suy ra A,M,I thẳng hàng
Bài 3: Cho tam giác ABC (AB < AC). Gọi I là trung điểm của BC. Qua điểm I vẽ đường thẳng vuông góc với BC cắt tia phân giác của tại M.
1. Chứng minh MB = MC.
2. Kẻ MH vuông góc với đường thẳng AB, kẻ MK vuông góc với đường thẳng AC. Chứng minh MH = MK.
3. Chứng minh AC – AB = 2.KC.
Bài 4: Cho △ABC cân tại A. Từ B và C kẻ đường thẳng vuông góc với AB và AC, chúng cắt nhau tại I.
1. Chứng minh IB = IC.
2. Lấy M là trung điểm của AI. Chứng minh MB = MC.
3. Chứng minh AI vuông góc với BC.
Bài 5: Cho △ABC. Phân giác góc A và góc B cắt nhau tại I. Kẻ IM ⊥ AB (M∈AB), kẻ IN ⊥ BC (N∈BC), kẻ IQ ⊥ AC (Q∈ AC).
1. Chứng minh △IMA = △IQA;
2. Chứng minh IM = IN = IQ.
Bài 6: Cho tam giác ABC vuông tại A. Tia phân giác của cắt AC tại D. Kẻ DK vuông góc với BC.
1. Chứng minh DA = DK.
2. Kẻ AH vuông góc với BC. Chứng minh tia AK là phân giác của .
Bài 10: Cho tam giác ABC, AH vuông góc với BC, AH = 12cm, AB = 15cm, CH = 16cm.
1. Tính độ dài BH, AC.
2. Tam giác ABC là tam giác vuông hay không? Vì sao?
giải nhanh giùm mk
Cho tam giác ABC cân tại A.Từ B và C vẽ đường vuông góc với AB và AC,chúng cắt nhau tại I. CM:
a)IB=IC
b)M là trung điểm AI.CM:MB=MC
c)CM:AI vuông góc BC
Cho tam giác ABC cân tại A.Từ B và C vẽ đường vuông góc với AB và AC ,chúng cắt nhau tại I
CM:
a)IB=IC
b)M là trung điểm AI.CM:MB=MC
c)CM:AI vuông góc BC
bn tham khảo ở đây nhé:
https://h.vn/hoi-dap/question/933824.html
hok tốt!!
Bạn tham khảo ở link này nhé :
https://olm.vn/hoi-dap/detail/243952093883.html
#hoc_tot#
:>
a,tc tg ABC cân tại A(GT) suy ra góc ABC=gócACB
TC: GÓC ABC+góc CBI=góc ACB+ góc BCI+90 độ(gt)
mà góc ABC=góc ACB(CMT)
Suy ra góc CBI= góc BCI SUY RA TG IBC cân tại I suy ra IB=IC(ĐPCM)
Bài 1:
Cho tam giác ABC cân có AB=AC=5cm, BC= 8cm.Kẻ AH vuông góc với BC ( H thuộc BC).
a, Chứng minh HB=HC
b, Tính độ dài AH.
c, Kẻ HD vuông góc với AB(D thuộc AB), kẻ HE vuông góc với AC ( E thuộc AC).Chứng minh tam giác HDE cân.
d, So sánh HD và HC.
Bài 2:
Cho tam giác ABC cân tại A có đường cao AH.
a, Chứng minh tam giác ABH = tam giác ACH và AH là tia phân giác của góc BAC.
b, Cho BH= 8cm, AB= 10cm.Tính AH.
c,, Gọi E là trung điểm của AC và G là giao điểm của BE và AH.Tính HG.
d, Vẽ Hx song song với AC, Hx cắt AB tại F. Chứng minh C, G, F thẳng hàng.
Bài 3
Cho tam giác ABC có CA= CB= 10cm, AB= 12cm.kẻ CI vuông góc với AB.Kẻ IH vuông góc với AC, IK vuông góc với BC.
a, Chứng minh IB= IC và tính độ dài CI
b, Chứng minh IH= IK.
c, HK// AC.
Bài 4:
Cho tam giác ABC cân tại A, vẽ AH vuông góc với BC tại H.Biết AB= 10cm, BH= 6cm.
a, Tính AH
b, tam giác ABH= tam giác ACH.
c, trên BA lấy D, CA lấy E sao cho BD= CE.Chứng minh tam giác HDE cân.
d, AH là trung trực của DE.
Bài 5:
Cho tam giác ABC cân tại AGọi D là trung điểm của BC.Từ D kẻ DE vuông góc với AB, DF vuông góc với AC. Chứng minh rằng:
a, tam giác ABD= tam giác ACD.
b, AD vuông góc với BC.
c, Cho AC= 10cm, BC= 12cm.Tính AD.
d, tam giác DEF cân.
Bài 6:
Cho tam giác ABC cân tại A có góc A < 900. kẻ BH vuông góc với AC ,CK vuông góc với AC.Gọi O là giao điểm của BH và CK.
a, Chứng minh tam giác ABH=Tam giác ACH.
b, Tam giác OBC cân.
c, Tam giác OBK = tam giác OCK.
d, trên nửa mặt phẳng bờ BC không chứa điểm A lấy I sao cho IB=IC.Chứng minh 3 điểm A, O, I thẳng hàng.
Bài 7
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, CE vuông góc với AB. BD và CE cắt nhau tại H.
a, Tam giác ABD=tam giác ACE.
b, Tam giác BHC cân.
c, ED//BC
d, AH cắt BC tại K, trên HK lấy M sao cho K là trung điểm của HM.Chứng minh tam giác ACM vuông.
Bài 8
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, CE vuông góc với AB. BD và CE cắt nhau tại H.
a, BD= CE.
b, Tam giác BHC cân.
c, AH là trung trực của BC
d, Trên tia BD lấy K sao cho D là trung điểm của BK.So sánh góc ECB và góc DKC.
Bài9
Cho tam giác ABC cân tại A.vẽ trung tuyến AM .từ M kẻ ME vuông góc với AB tại E.kẻ MF vuông góc với AC tại F.
a, chứng minh tam giác BEM= tam giác CFM.
b, AM là trung trực vủa EF.
c, từ B kẻ đường thẳng vuông góc với AB tại B, từ C kẻ đường thẳng vuông góc với AC tại C, hai đường này cắt nhau tại D.Chứng minh A,M,D thẳng hàng.
Bài 10
Cho tam giác ABC cân tại AGọi M là trung điểm của AC.Trên tia đối MB lấy D sao cho DM= BM.
a, Chứng minh Tam giác BMC= tam giác DMA.Suy ra AD//BC.
b, tam giác ACD cân.
c. trên tia đối CA lấy E sao cho CA= CE.Chuwngsminh DC đi qua trung điểm I của BE.
Bài 11: Cho tam giác ABC cân tại A (AB = AC ), M là trung điểm của BC. Gọi D là điểm là điểm nằm giữa A và M. Chứng minh rằng:
a) AM là tia phân giác của góc A?
b) (ABD = (ACD.
c) (BCD là tam giác cân ?
Bài 12: Cho tam giác ABC vuông tại A , đường phân giác BD. Kẻ DE vuông góc với BC (E BC). Gọi F là giao điểm của BA và ED.
Giúp mk với các bạn đẹp trai xinh gái ai làm đúng mk tik cho
Sắp hết Tết rùi giúp mk vs
ủa r viết ngần đó thì mất bn tg thek
Má ơi sao nó dài